

Contribution ID: 50

Type: not specified

APPLICATION OF SMALL-ANGLE SCATTERING TO INVESTIGATE CYANOBACTERIAL THYLAKOID MEMBRANES

Dainius JAKUBAUSKAS^{1,2}, Lucja KOWALEWSKA³, Poul Erik JENSEN², Kell MORTENSEN¹ and Jacob KIRKENS-GAARD^{1*}

¹ Niels Bohr Institute, University of Copenhagen, Denmark

² Copenhagen Plant Science Center, University of Copenhagen, Denmark

³ Faculty of Biology, University of Warsaw, Poland

*Corresponding author : E-mail: jjkk@nbi.ku.dk

Cyanobacteria are relatively simple unicellular photosynthetic prokaryotes, considered ancestors of higher plant chloroplasts. We have investigated thylakoid stacking and dynamics of three cyanobacterial species with various thylakoid arrangements *in vivo* by means of small-angle scattering and have correlated it to the results of transmission electron microscopy.

We have formulated a mathematical model describing thylakoid membrane ultrastructure and stacking using the designated form factor and the lamellar structure factor. This mathematical model has been implemented in the scattering curve-fitting framework 'WillItFit?', what now enables the fitting of experimental scattering data from photosynthetic organisms and obtaining thylakoid ultrastructural parameters: thylakoid membrane thickness, lumen width, thylakoid repeat distance and related uncertainty parameters.

The investigation of cyanobacterial thylakoid membranes by small-angle scattering can provide information on photosynthetic organism adaptation and thylakoid dynamics in relation to environmental factors and stimuli: e.g. ion concentration, illumination or temperature changes.

Author: Dr JAKUBAUSKAS, Dainius (Malmö university)

Presenter: Dr JAKUBAUSKAS, Dainius (Malmö university)