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What do we measure in SANS?

_27T

b=kl =

q=k; —ky

Ly
momentum = hk / k f hw=FE; — E;
(hk)? F;

enerqy = 5
m

lal 1

sin® =7 |k|

g=2ksin0 = A%Sinﬂ

Measure number of neutrons scattered as function of Q

Intensity of scattering as function of Q is related to the Fourier transform of
the spatial arrangement of matter in the sample => Correlations in Space

Q is "inverse space” — smaller Q means larger structures in real space

What happens to energy transfer !
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1 Inelastic : E=xdE
sample.

SANS experiments integrate over all ®

Energy transfer
Energy transfer



Anatomy of a SAS Instrument
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Anatomy of a SANS Instrument
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* Longer L2 = smaller angle = lower Q = larger structures

* Longer wavelength = lower Q = larger structures



Anatomy of a SANS Instrument
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Anatomy of a SANS Instrument
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Anatomy of a SANS Instrument
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Anatomy of a SANS Instrument
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Anatomy of a SANS Instrument

Shielding
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“"Monochromatic” vs TOF SANS

single wavelength w?i‘;ie_?)%gl]ir:&ge
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Some of the neutrons all of the time All of the neutrons some of the time

4
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Varying angle to access different Q values Varying angle and wavelength to access
different Q values



Neutron Guides

Make use of total reflection of
neutrons from thin layers of nickel and
other materials on a glass or metal
substrate.

Act as “optic fibres” for neutrons,
transporting the neutrons from the
source to the instrument.

All neutrons that impinge on the guide
surface below the critical angle for their
wavelength will be reflected.
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Choosing the neutron wavelength

Monochromator

Filter

Velocity Selector

Chopper

Makes use of Bragg diffraction to select the desired
wavelengths.

nA = 2dsiné

Materials with different d-spacings aligned with
different crystallographic planes at the appropriate
angles to the neutron beam will select different
wavelengths.

Exercise :

Using Si (111) with d-spacing = 3.136 A and a
take-off angle of 90° (20 = 90°) what wavelength
of neutrons will be selected by the
monochromator?



Choosing the neutron wavelength

Monochromator

Filter

Velocity Selector

Chopper

Makes use of Bragg diffraction to select the desired
wavelengths.

nA = 2dsiné

Materials with different d-spacings aligned with
different crystallographic planes at the appropriate
angles to the neutron beam will select different
wavelengths.

Exercise :

Using Si (111) with d-spacing = 3.136 A and a
take-off angle of 90° (20 = 90°) what wavelength
of neutrons will be selected by the
monochromator?

Taking the first order peak :
A =2 x% 3.136 % sin(45)
A=4435A



Choosing the neutron wavelength

Filters are used to exclude unwanted wavelengths
of neutrons.

Monochromator
In the case of SANS this is usually cutting out
unwanted thermal neutrons while allowing the cold
neutrons to pass.
Filter

The filter may be a crystal such as Beryllium which
cuts off wavelengths below 4 A or a neutron guide
with a particular shape that only allows certain
wavelengths to be transmitted. Curved guides,
multi-channel benders and optical filters (“kinked
guides”) are such devices.
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(from Mildner & Lamaze, J. Appl. Cryst, 31, 1998)



Choosing the neutron wavelength

A velocity selector is a rotating device made up of
alternating absorbing and transmitting material with
Monochromator a helical path for the neutrons.

The speed of rotation determines the velocity of the
neutrons that will pass through the device without

. being absorbed.
Filter
The transmitted neutron wavelength is given by
ah
A=——
Lmo

Velocity Selector where o is the helical pitch angle, L is the length of

the selector and w is the rotational frequency.
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Choosing the neutron wavelength

A chopper is a rotating device that is absorbing
except for one or more openings that allow

Monochromator heutrons to pass.

The speed of rotation and the size of the opening

determine the range of wavelengths that are allowed

. to pass.

Filter
Choppers are used either at pulsed sources to
select a specific wavelength range or at continuous

, sources to generate a pulsed neutron beam.
Velocity Selector
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Time-distance diagram for a SANS instrument at ESS



Choppers

. : . . . Faster Neutrons  Slower Neutrons
We use time-distance diagrams to visualise

chopper operation.

Slope of lines is neutron velocity = wavelength 39}
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Choppers

30

Complex chopper
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to generate different
pulse patterns
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Collimation

Pinhole sample

instrument determines the minimum |\ aperture A,
i g
accessible angle and hence the | A0 S
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2
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Detecting neutrons

Neutrons mostly interact weakly with matter. This 9B (n,a) “Li + 2.792 MeV
is a problem if we want to detect them
%Li (n,a) *H + 4.78 MeV

In order to detect the neutron we use materials that
[ ) . 3 3
have nuclear reactions with the neutron that He (n,p) °H + 0.765 MeV

produce detectable products. I57Gd (n,Y) '8Gd + 8 MeV

These materials have a high absorption cross-
section and prompt production of high energy
ionized particles.

The absorber can be gaseous or solid within a

proportional gas detector, or solid or liquid in a :
. . He «—dome
scintillator detector. electronics + | “He
—t »
chamber |CFa
«—— membrane

The most common detectors used on SANS
instruments are proportional counters containing dﬁtecgon

. .. . chamber
3He, either as a multi-wire chamber or as multiple X cathodes 4" Y cathodes

single-wire tubes. Anodes



Recording Detected Neutrons

Once a neutron is detected, we need to record it.

There are essentially two schemes for doing so:

Histogram recording
The data acquisition electronics fill histograms (in equipment
memory) of detection location and time-of-flight (if relevant).

These histograms are then processed to produce the final
“reduced” data set.

Event recording
The data acquisition electronics record the location and time of

every detection event.

This event stream is then processed into a histogram in Q space
which is then finally processed to the “reduced” data set.



Shielding

Why do we need shielding?




Why do we need shielding?
Radiation causes damage to ...
Human Body (Sievert or Rem)

Equipment (Gray or Rad)
Experimental data (Noise)

Shielding



Shielding

* Sievert [Sv] and Rontgen Equivalent Man (Rem) are the
two most commonly used units that quantifies the dose
received by human body.

Why do we need shielding?

Radiation causes damage to ...

* 1Sv=1
Human Body (Sievert or Rem) >v=100rem
Equipment (Gray or Rad)

Experimental data (Noise) * Sv has the Sl unit of J/kg, however Sv is the absorbed

dose convoluted with the respective biological damage

factors, which are usually published by the International
Commission on Radiological Protection (ICRP)
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Exposure Significance
3.9 Sv 50% chance of survival
> 1 Sv Serious to lethal
> 50 mSv Requiring medical checks
50 mSv.y™’ Occupational dose limit
15 =50 mSv.y™ Strict dose control necessary
5~15mSv.y” Professional exposure
< 5mSv.y’ Minimum control necessary
] mSv.y™ Natural background
10 uSv.y™ Insignificant
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A.H. Sullivan: “A Guide to Radiation and Radioactivity Levels Near High Energy Particle Accelerators.” Nuclear Technology
Publishing Ashford, Kent, TN23 1JW, England



Why do we need shielding?
Radiation causes damage to ...
Human Body (Sievert or Rem)

Equipment (Gray or Rad)
Experimental data (Noise)

Gray [Gy] and Radiation Absorbed
Dose (Rad) are the two most
commonly used units that quantifies
the dose received by equipment.

1Gy=1]/kg

1Gy=100rad

A.H. Sullivan: “A Guide to Radiation and Radioactivity Levels Near High Energy Particle Accelerators.” Nuclear Technology

Publishing Ashford, Kent, TN23 [JW, England

Shielding
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Material
Electronic components
Teflon (PTFE)
Nylon
Plastic scintillator
Mylar
Rubbers-butyl
-silicone

Organic cables
Oil-mineral

-silicone
Polythene
Polyeurathane
Epoxy resins
Paint-epoxy resin

-celluose ester

Magnet coil insulation
Glass filled polyester
Kapton
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Shielding

Why do we need shielding?

Radiation causes damage to ... *  Experiment / instrument dependent
Human Body (Sievert or Rem) *  Usually most strln.gent requn*eme'nt -
Equipment (Gray or Rad) detectors are designed to detect!

Experimental data (Noise)




Shielding

Why do we need shielding?

mfp (cm)
L. Radiation Concrete Iron Lead
Radiation causes damage to ... -
Gamma rays 21 4.7 2.4
] Neutrons < 25 MeV 18 16 -
Human Body (Sievert or Rem) Neutrons 25—100 MeV 28 _ _
Equipment (Gray or Rad) Neutrons > 100 MeV 43 18 17
Experimental data (Noise) Gamma and neutron dose attenuation lengths
Inelastic Nominal Attenuation Tenth
Low Energy Neutron Capture Material Cross section density mfp value
. (barn) (g.cm™) . (cm)
This process a low energy neutron (gem™®)  (cm)
gets by a nucleus and a different Beryllium 0.20 | 8 75 4 96
particle will be emitted. i "3 T v - -
Concrete 2.35 100 43 99
Earth . 1.8 100 56 128
Examples: Aluminium 0.42 2.7 106 39 90
Baryte - 32 112 35 80
* 3He(n,p)’H Iron 0.70 7.4 132 17.8 a1
61 : 4 Copper 0.78 8.9 135 15.2 35
* °Li(n,t)*He Tungsten 1.61 19.3 185 9.6 22
10 71 i Platinum 1.78 214 190 8.9 20
* "B(n,x)’Li Lead 1.77 11.3 194 17.0 39
° |4N(n’P) |4C Uranium __,l,'9§ 19.0 24

° I I3Cd(n,Y)| |4Cd
* H(n,y)?H

A.H. Sullivan: “A Guide to Radiation and Radioactivity Levels Near High Energy Particle Accelerators.” Nuclear Technology

Publishing Ashford, Kent, TN23 1JW, England
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High energy (> 100 MeV) neutron attenuation lengths and tenth values
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Anatomy of a SANS Instrument
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