

Introduction to Small Angle Neutron Scattering II

Form, structure factors and polydispersity

Wojtek Potrzebowski

Data Management of Software Centre of ESS

Biochemistry and Structural Biology LU

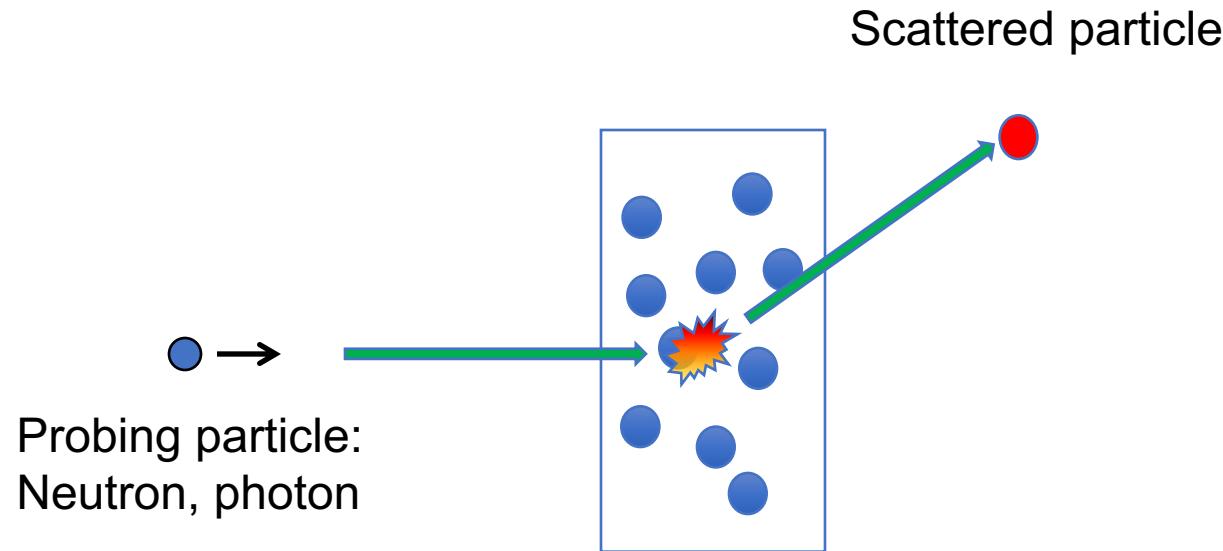
LUNDS
UNIVERSITET

Goals

- Develop practical rather than theoretical understanding of subject
- Active participation is appreciated!
- Feel free to stop me at any time

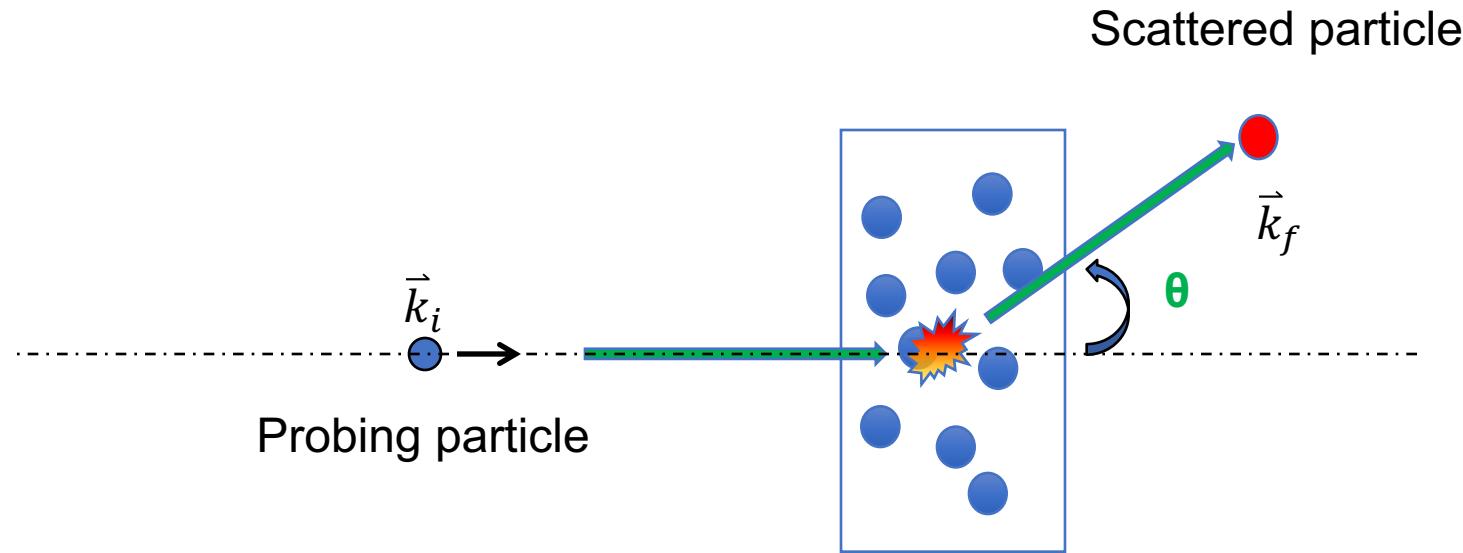
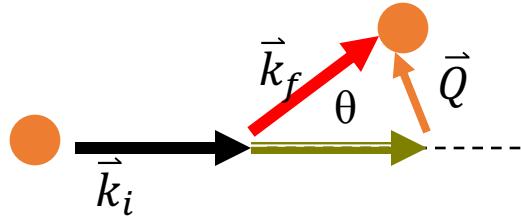
Basic concepts of SANS

A typical scattering experiment setup



Basic concepts of SANS

A typical scattering experiment setup

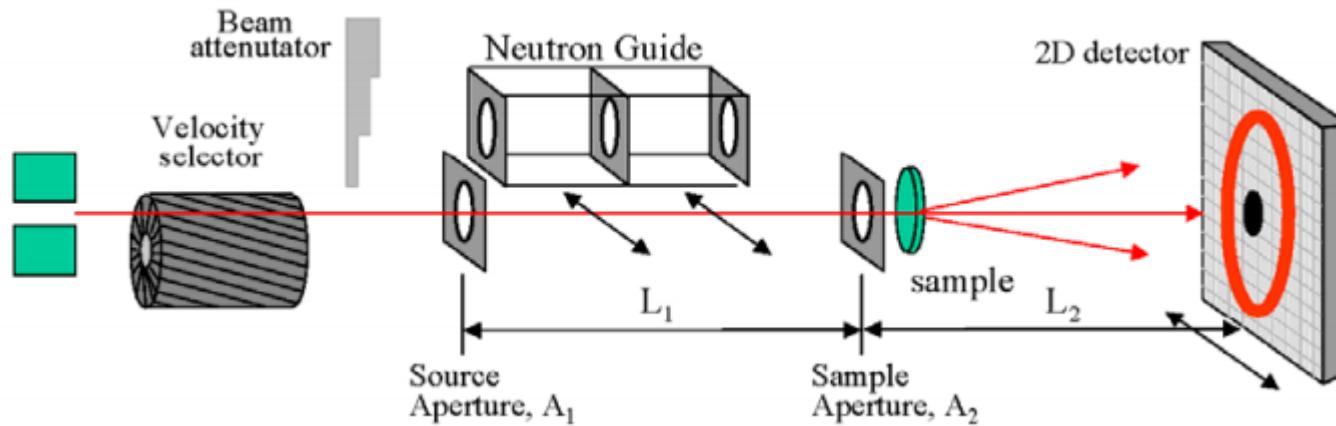


SANS measures the **scattering intensity function**, $I(\vec{Q})$

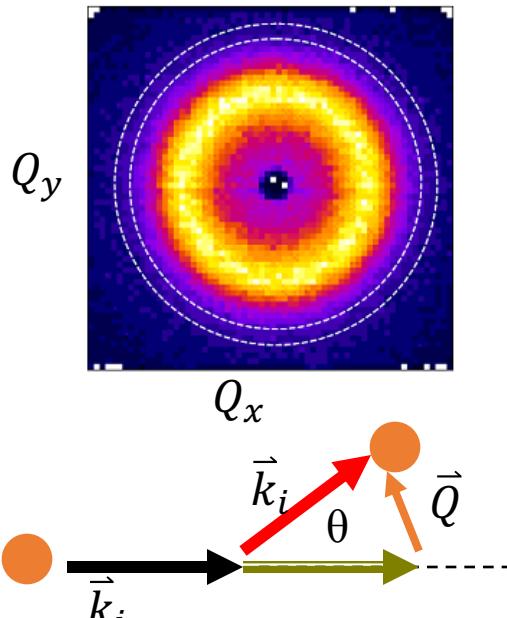
When $k_i = k_f = k$,

$$Q = 2k \sin\left(\frac{\theta}{2}\right) = \frac{4\pi}{\lambda} \sin\left(\frac{\theta}{2}\right).$$

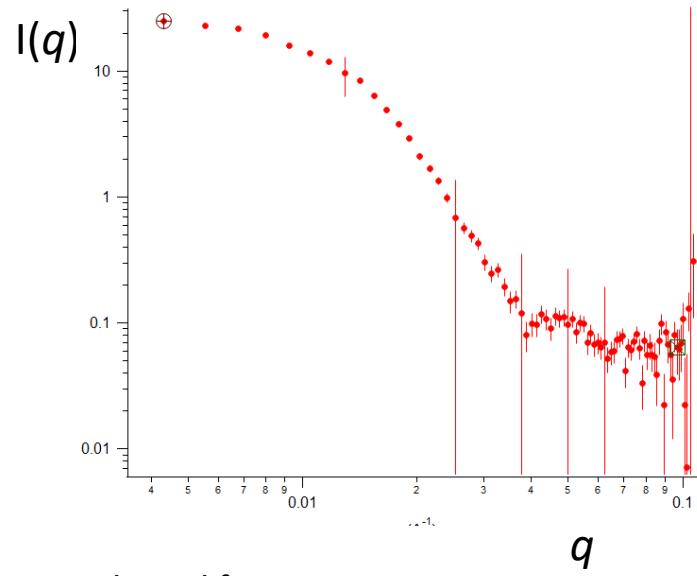
Basic concepts of SANS



2D pattern $I(\vec{Q}) = I(Q_x, Q_y, Q_z \approx 0)$



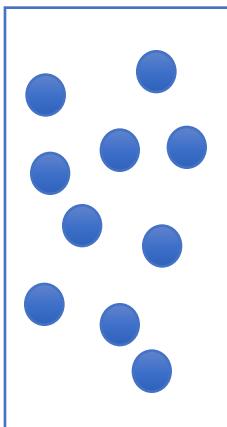
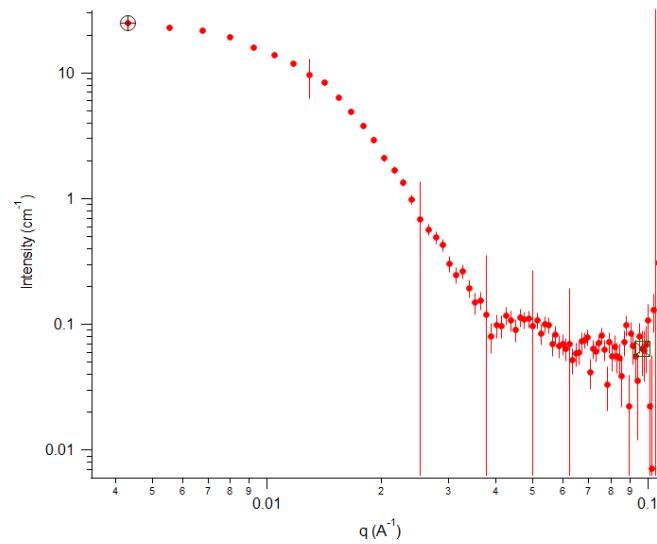
1D data: $I(Q)$



Adapted from Yun Liu

Question 1

What components should be included in the model to explain SANS data?



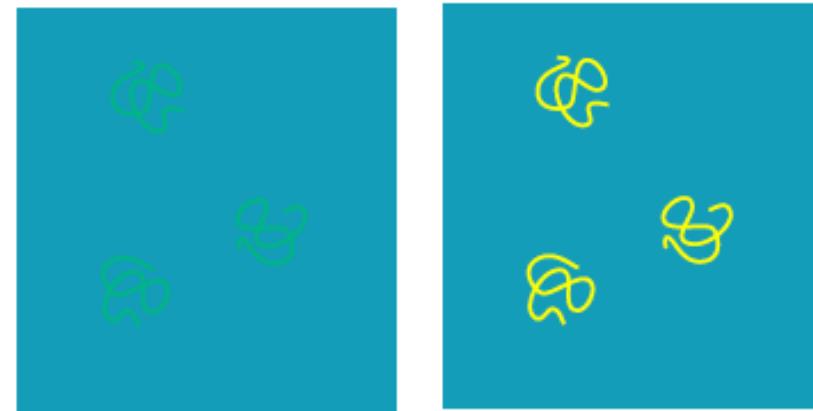
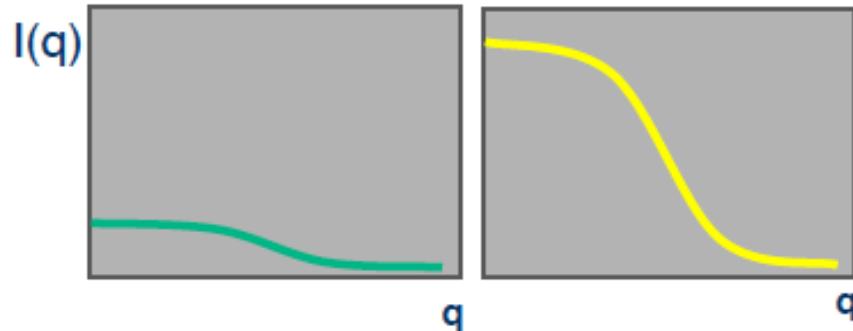
Scattering intensity

$$I(q) = (\Delta\rho)^2 nM^2 P(q) S(q)$$

Intensity = Pre-factor * Form Factor * Structure Factor

Pre factor

$$I(q) = (\Delta\rho)^2 \ nM^2 \ P(q) \ S(q)$$

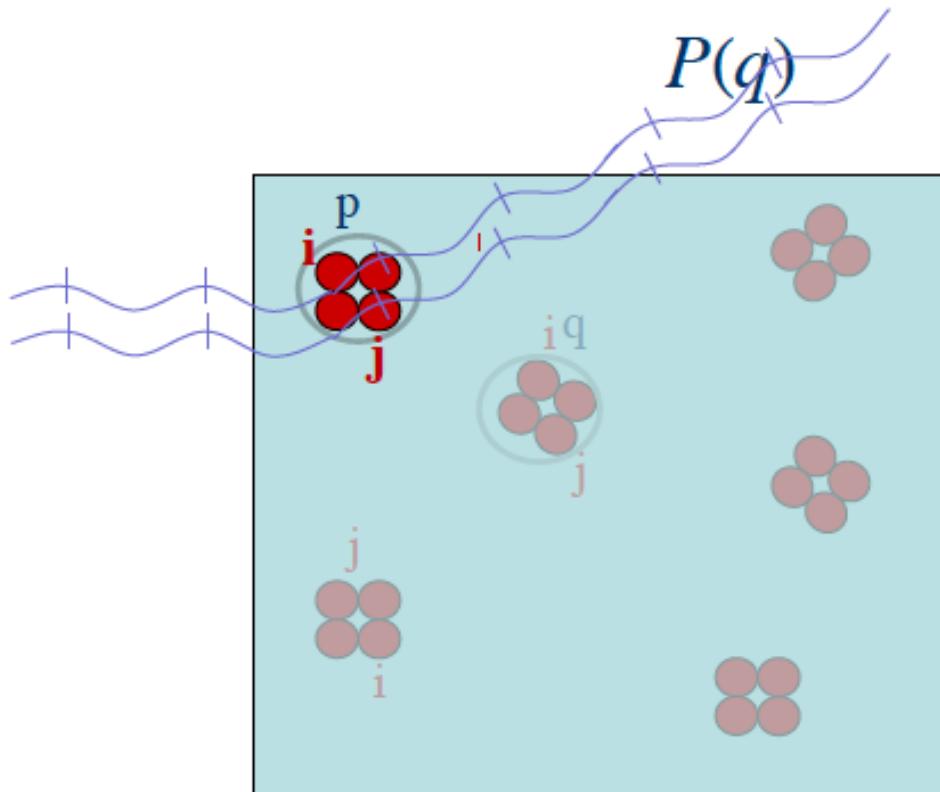


Pre-Factor given by

- Contrast Factor
- Number of Particles
- Mass of Particles

Intra and inter particle interactions

$$I(q) = (\Delta\rho)^2 nM^2 P(q) S(q)$$

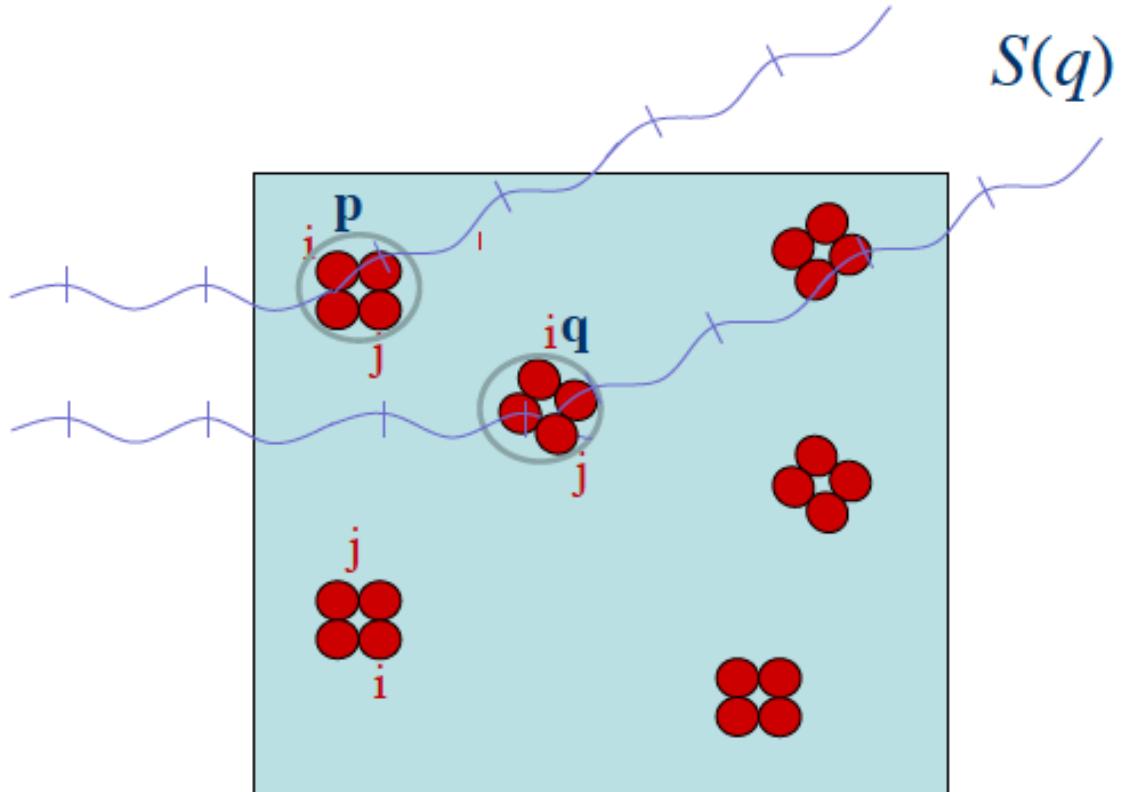


Form factor $P(q)$ represents the interference of neutrons scattered from different parts of the same object

Intra and inter particle interactions

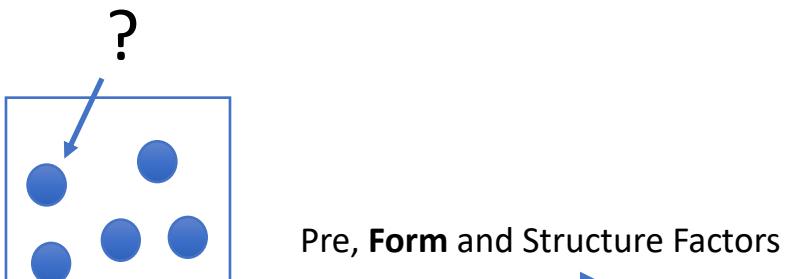
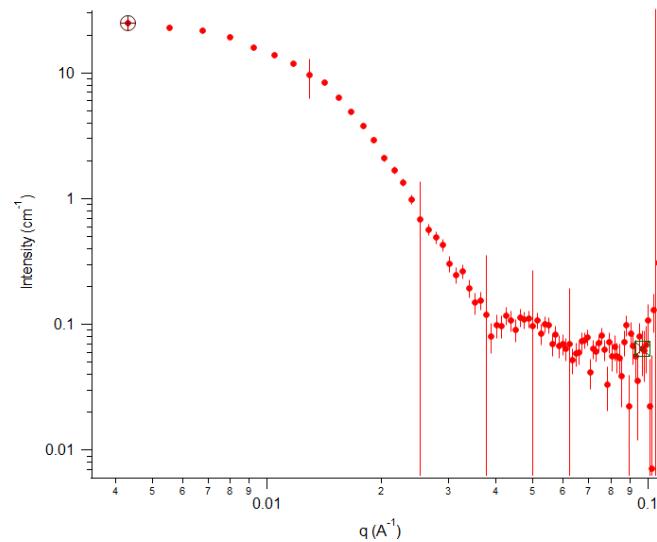
$$I(q) = (\Delta\rho)^2 nM^2 P(q) S(q)$$

Structure factor $S(q)$ represents interference between different objects.

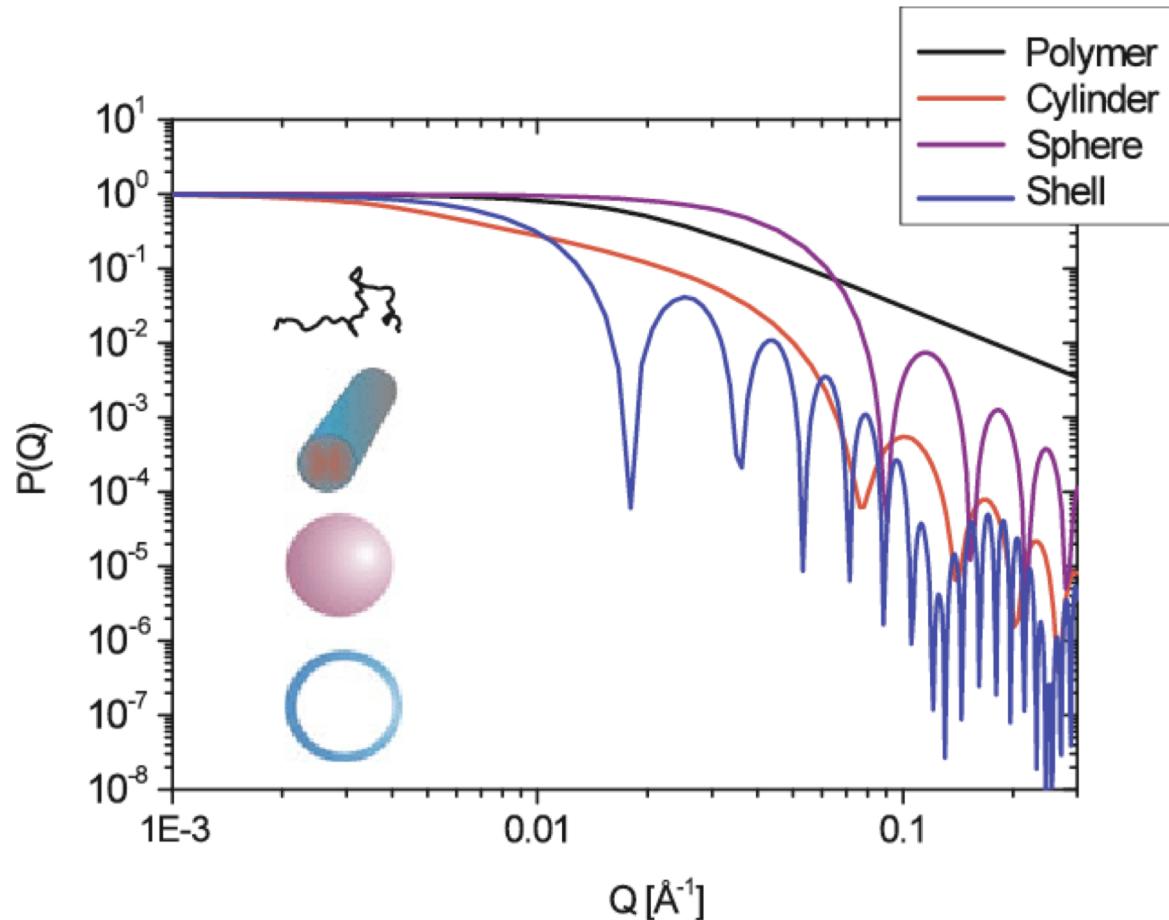


Question 2

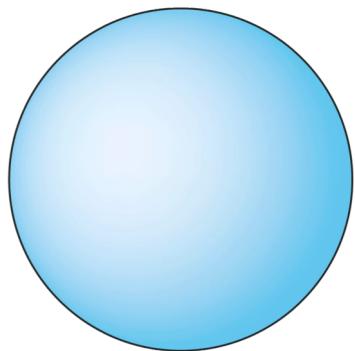
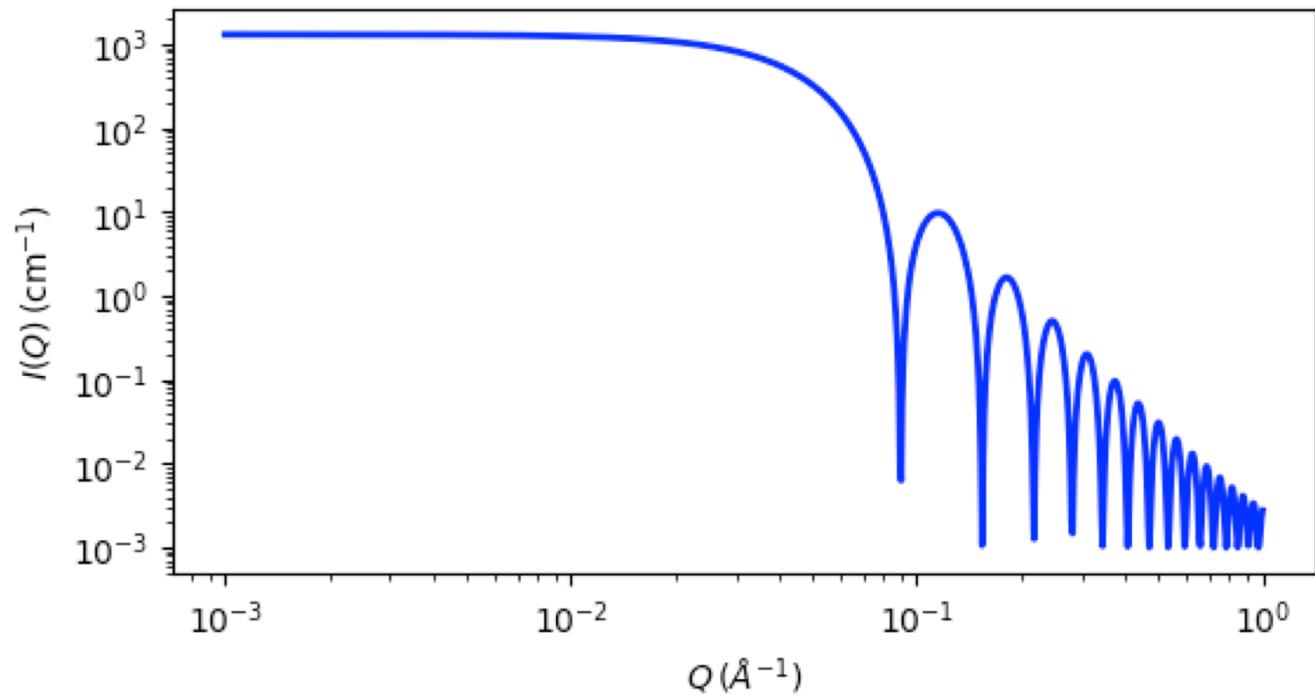
How to define form factor?



Form factors determined for different shapes



Form factor of sphere



$$P(q) = A^2(q) = \left[\frac{3}{(qR)^3} [\sin(qR) - qR \cos(qR)] \right]^2$$

Form factor of sphere - derivation

$$P(q) = A^2(q) = \left[\frac{3}{(qR)^3} [\sin(qR) - qR \cos(qR)] \right]^2$$

Use, that the scattering amplitude from a homogeneous volume V can be written

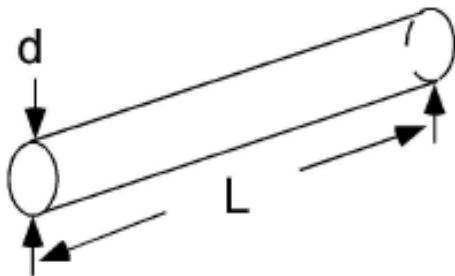
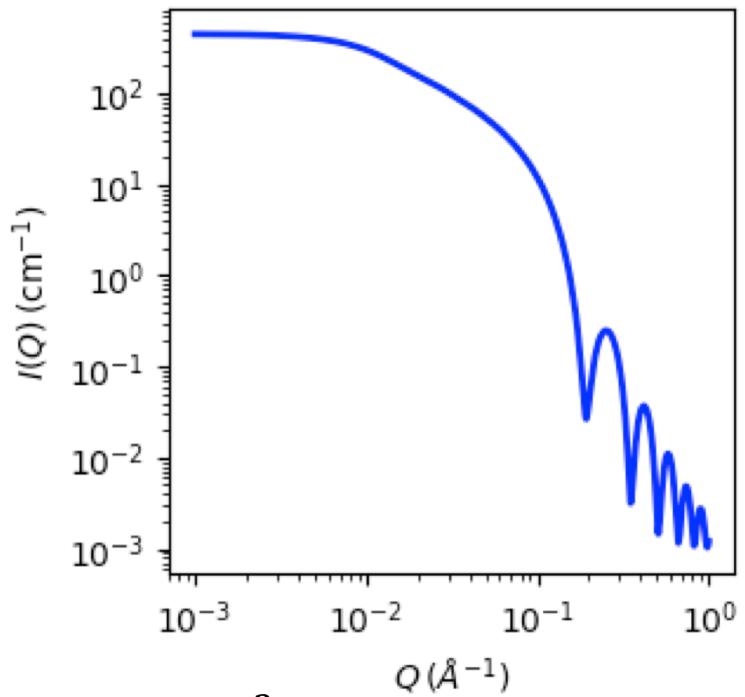
$$A(\mathbf{q}) = \frac{1}{V} \int_{sphere} \rho(\mathbf{r}) \exp[-i\mathbf{q} \cdot \mathbf{r}] d\mathbf{r}$$

to calculate the form factor $P(q)$
of a homogeneous sphere of radius R .

You may need the integral formula

$$\int x \sin x dx = \sin x - x \cos x$$

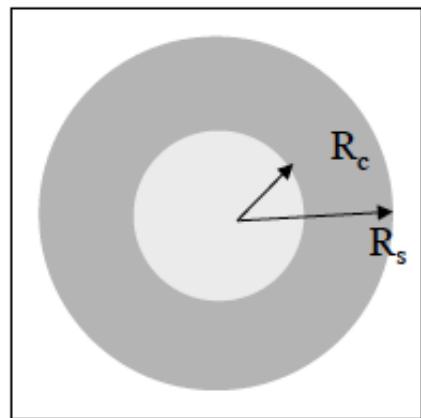
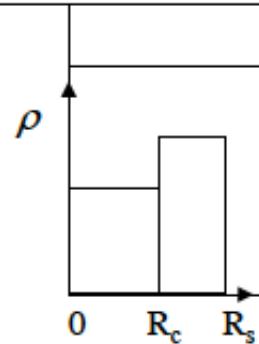
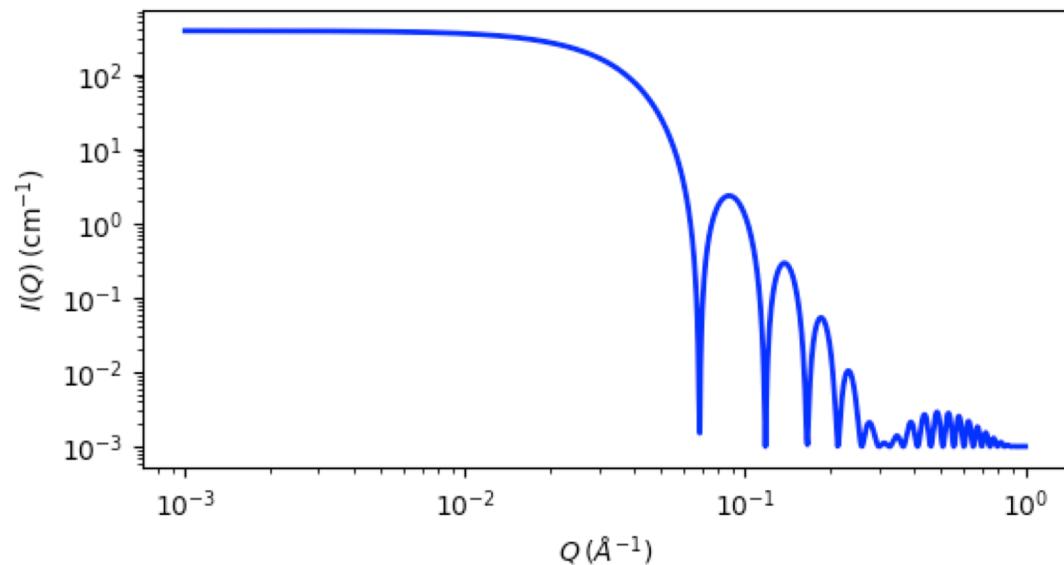
Form factor for cylinder



$$P(Q) = \frac{1}{2} \int_0^\pi \frac{\sin^2 \left(Q \frac{L}{2} \cos \alpha \right)}{\left(Q \frac{L}{2} \cos \alpha \right)^2} \frac{\left[2J_1 \left(Q \sin \alpha \frac{d}{2} \right) \right]^2}{\left(Q \frac{d}{2} \sin \alpha \right)^2} \sin \alpha \, d\alpha$$

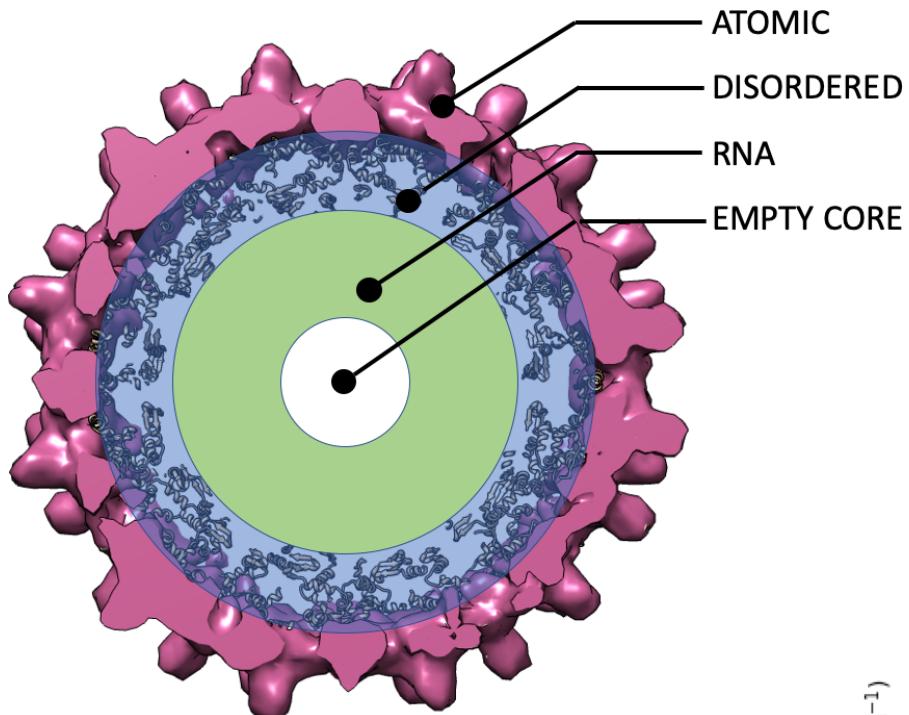
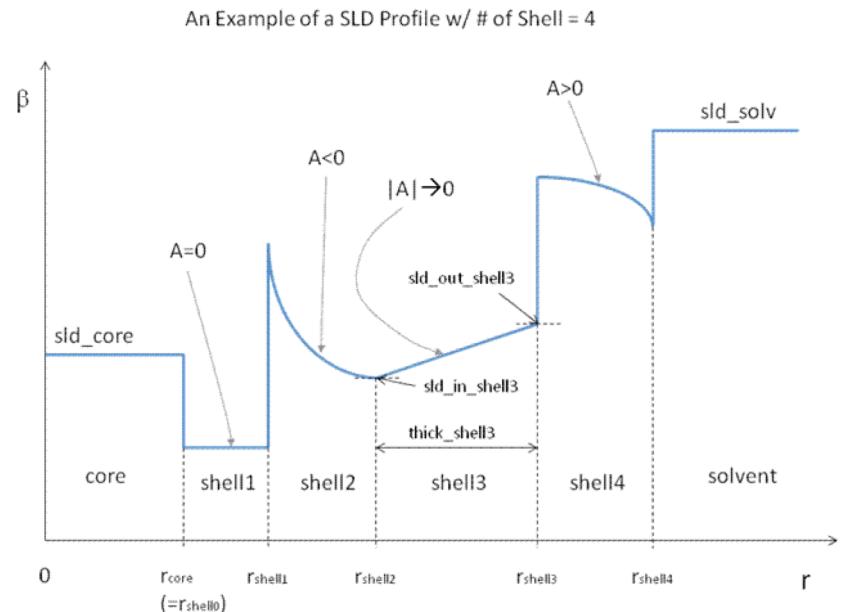
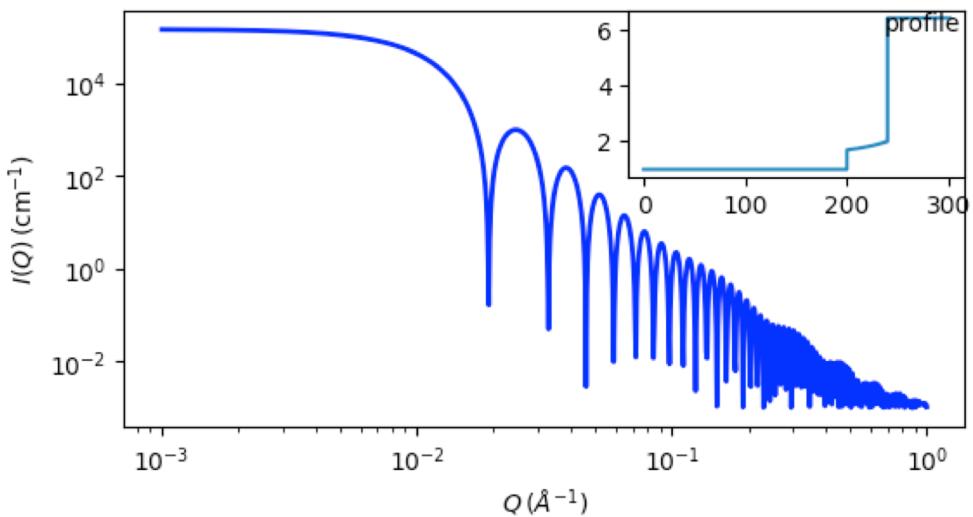
where J_1 is the first order Bessel function and α is defined as the angle between the cylinder axis and the scattering vector q .

Core-shell particle

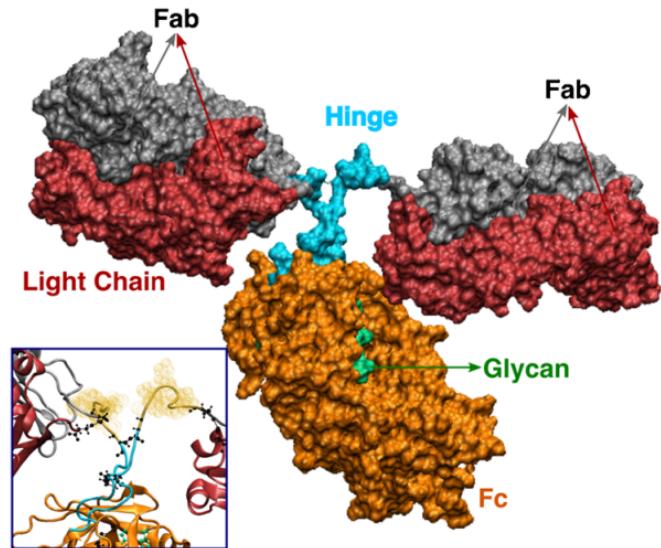


$$F(q) = \frac{3}{V_s} \left[V_c (\rho_c - \rho_s) \frac{\sin(qr_c) - qr_c \cos(qr_c)}{(qr_c)^3} + V_s (\rho_s - \rho_{\text{solv}}) \frac{\sin(qr_s) - qr_s \cos(qr_s)}{(qr_s)^3} \right]$$

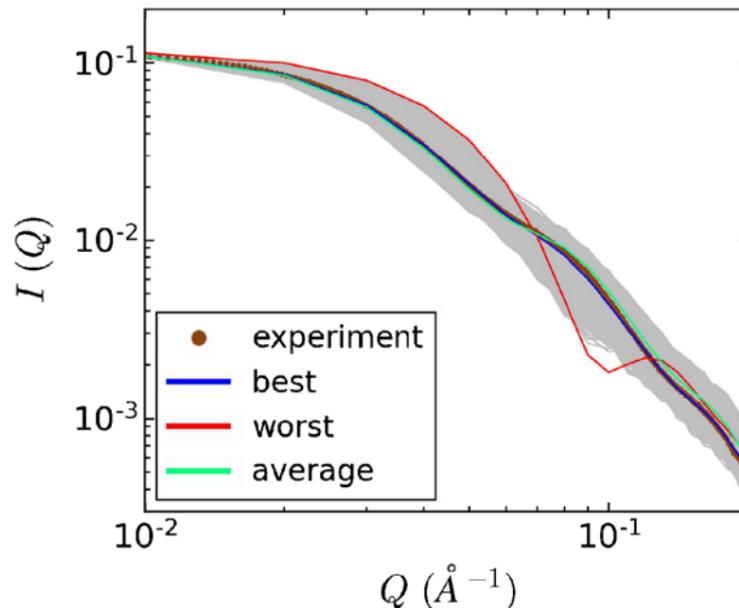
Onion model can be used to model virus capsids



Proteins with the PDB structures



Monoclonal antibody protein



$$I(Q) = n \sum_i \sum_j b_i b_j \frac{\sin(Q|\vec{r}_i - \vec{r}_j|)}{Q|\vec{r}_i - \vec{r}_j|}$$

b_i, b_j – atomic form factors

Form and Structure Factors

Lots of form and structure factors have already been calculated

Advances in Colloid and Interface Science
70 (1997) 171–210

ADVANCES IN
COLLOID AND
INTERFACE
SCIENCE

Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting¹

Jan Skov Pedersen

Department of Solid State Physics, Risø National Laboratory, DK-4000 Roskilde, Denmark

Abstract

Analysis and modeling of small-angle scattering data from systems consisting of colloidal particles or polymers in solution are discussed. The analysis requires application of least-squares methods, and the basic principles of linear and non-linear least-squares methods are summarized with emphasis on applications in the analysis of small-angle scattering data. These include indirect Fourier transformation, square-root

Form and Structure Factors

Lots of form and structure factors have already been calculated

NIST Center for Neutron Research

NCNR Home Instruments Science Experiments

SANS & USANS Data Reduction and Analysis

Visit the main page

Data Analysis Using Sas

The recommended tool for analyzing small angle scattering data.

SASFIT MANUAL

An upgrade of the reduction and analysis software available to our users in order to plan better experiments is currently possible.

- All of the SANS and USANS Reduction and updaters.
- Installation package: [NCNR_SANS_package](#)
- Installation instructions: [Install_Instructions](#)
- Watch the installation movie: [Install_SA](#)
- A Quick Start guide to the package is included in the movies)

- [What's New?](#)
- Manuals are included in the download package:
 - [SANS Reduction Help File \(PDF\)](#)
 - [USANS Reduction Help File \(PDF\)](#)
 - [Data Analysis Help File \(PDF\)](#)

SasView

ISIS NIST diamond OAK RIDGE National Laboratory Ansto TU Delft

screenshot of multiple/global fitting

SasView : <http://www.sasview.org>

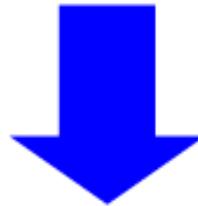
SASFIT : <https://www.psi.ch/sinq/sansii/sasfit>

NIST Igor : http://ncnr.nist.gov/programs/sans/data/red_anal.html

... and coded into software.

Monte Carlo simulations

When everything fails...



Do Monte Carlo simulations!

Monte Carlo simulations:
Form factors of polymer systems

Monte Carlo simulations

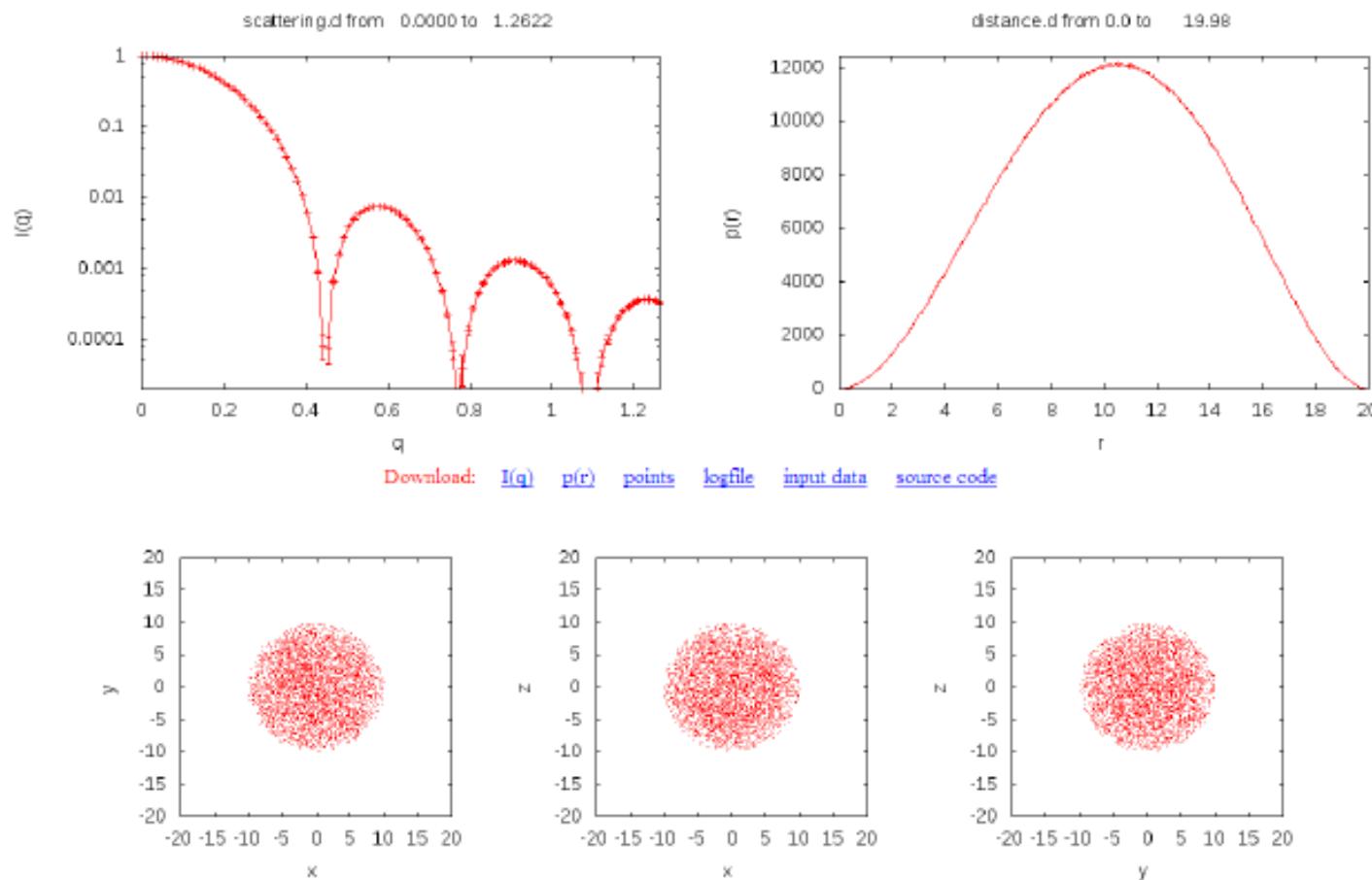
- + Ideal for random structures with many degrees of freedom
- + Any parameter or function can be sampled: $P(q)$, $S(q)$
- – $P(q)/S(q)$ is not on analytical form

Simple approach – trial-and-error:

- Choose model and parameters*
- Generate random configurations – sample $P(q)/S(q)$
- Compare with experimental data

*) Simple enough to allow simulations – detailed enough to describe experimental data
Use efficient simulation algorithm

Monte Carlo simulations



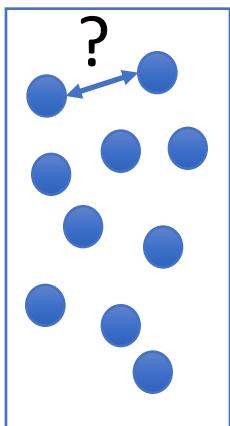
Scattering intensity

$$I(q) = (\Delta\rho)^2 nM^2 P(q) S(q)$$

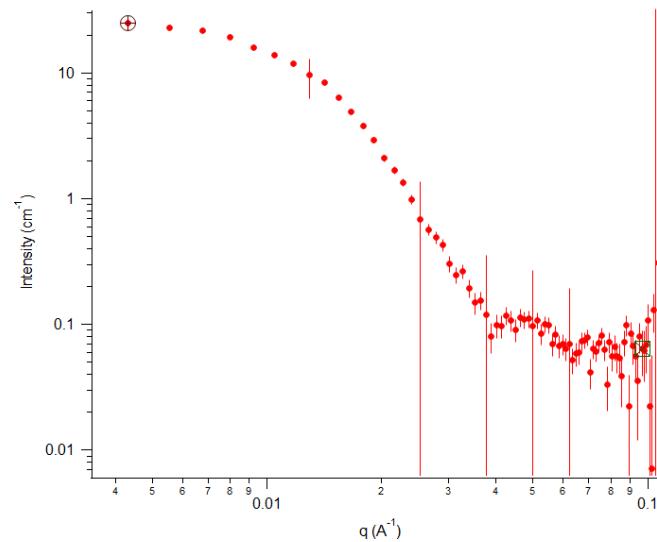
Intensity = Pre-factor * Form Factor * Structure Factor

Question 3

What should we consider when defining interparticle interactions?



Pre, Form and **Structure** Factors

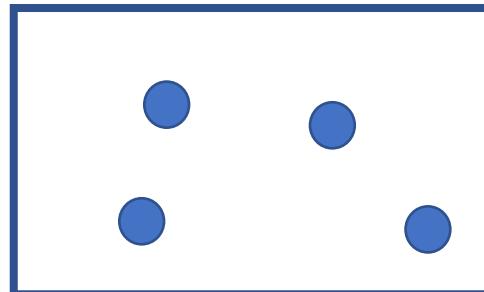


Determination of Structure Factor

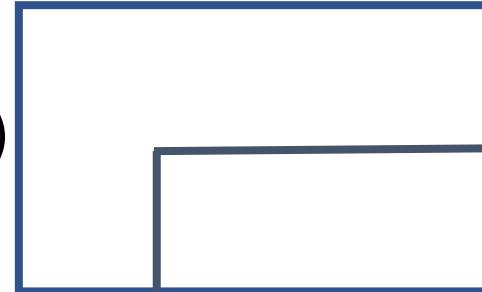
For an isotropic solution:

$$S(q) = 1 + 4\pi N_p \int_0^\infty [g(r) - 1] \frac{\sin(qr)}{qr} r^2 dr$$

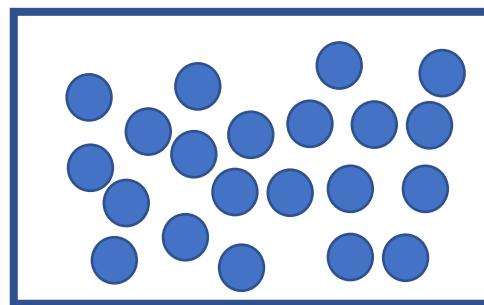
Diluted



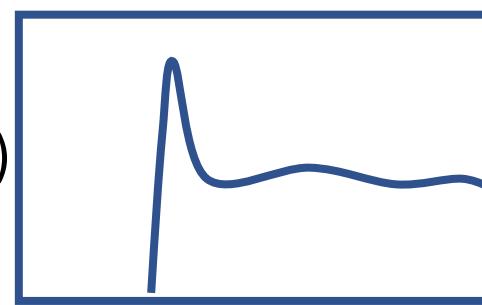
$g(r)$



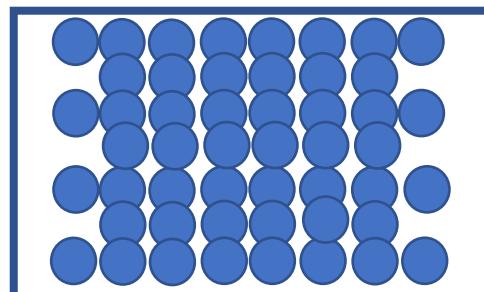
Concentrated



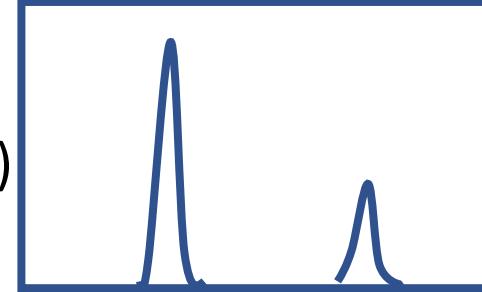
$g(r)$



Ordered



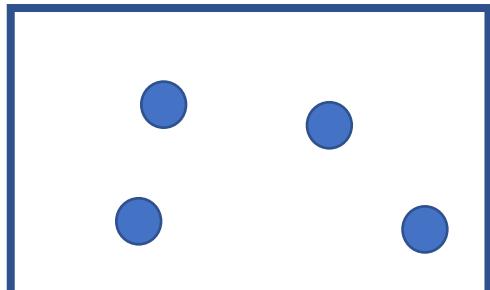
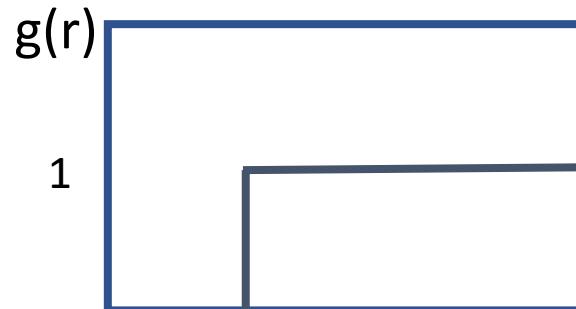
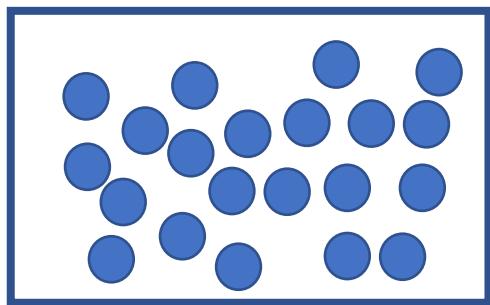
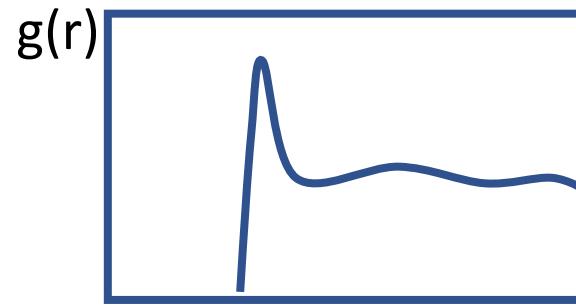
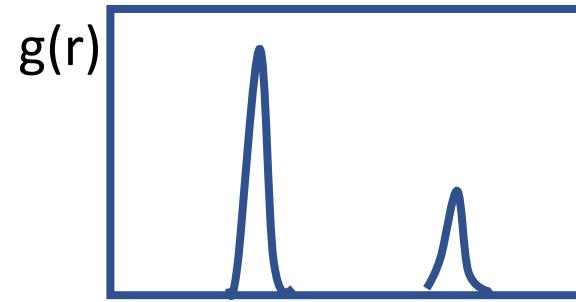
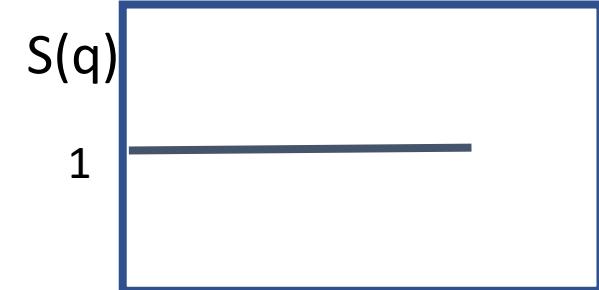
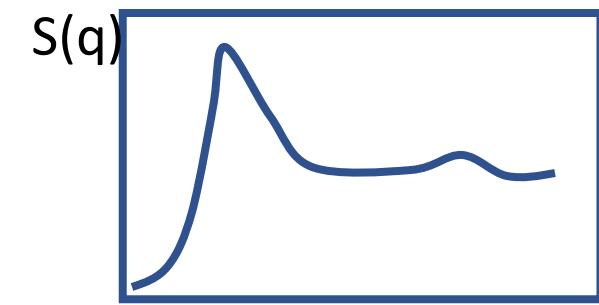
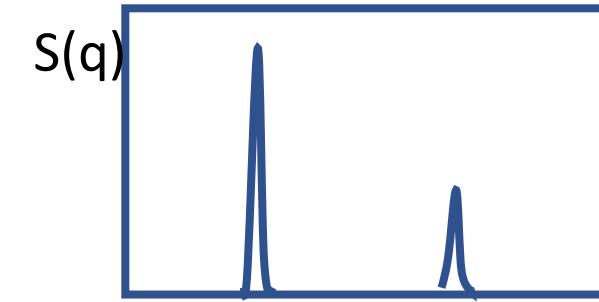
$g(r)$



Determination of Structure Factor

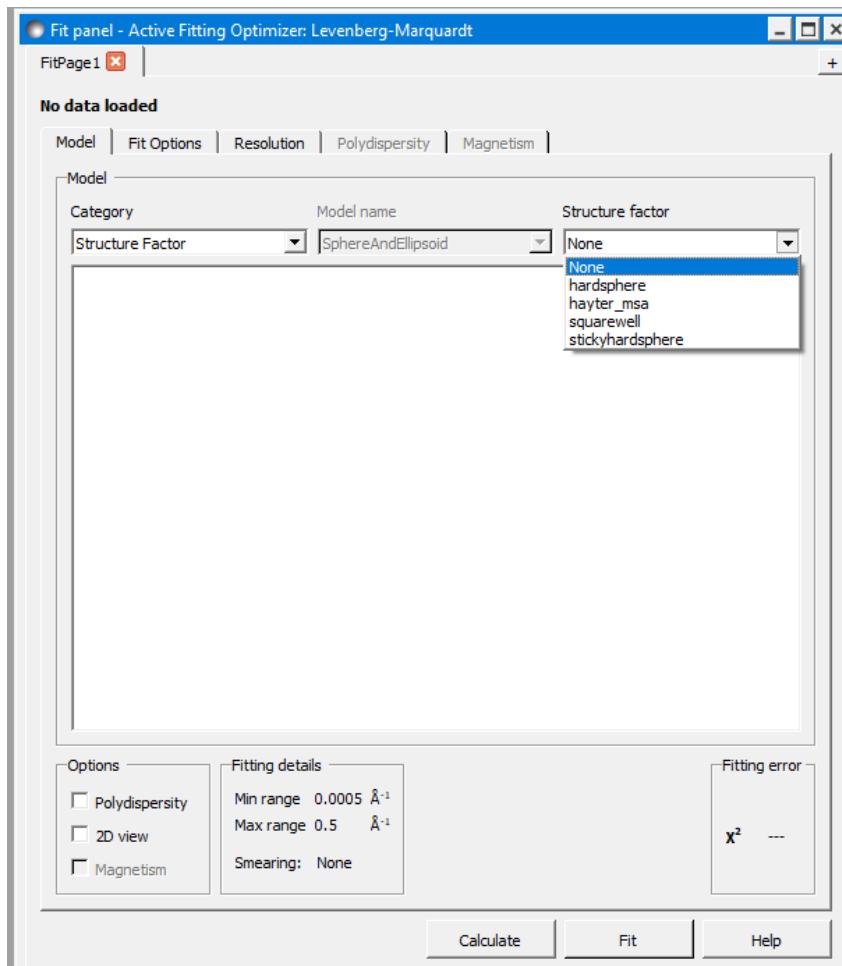
For an isotropic solution:

$$S(q) = 1 + 4\pi N_p \int_0^\infty [g(r) - 1] \frac{\sin(qr)}{qr} r^2 dr$$



Models for $S(Q)$ in SasView

$$I(q) = (\Delta\rho)^2 nM^2 P(q) S(q)$$



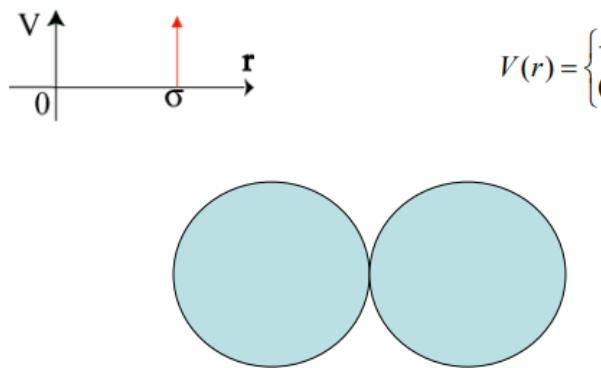
Four different type of interaction models:

1. Hardsphere
2. Hayter_MSA
3. Squarewell
4. Stickyhardsphere

$S(Q)$: Hardsphere

$$I(q) = (\Delta\rho)^2 nM^2 P(q) S(q)$$

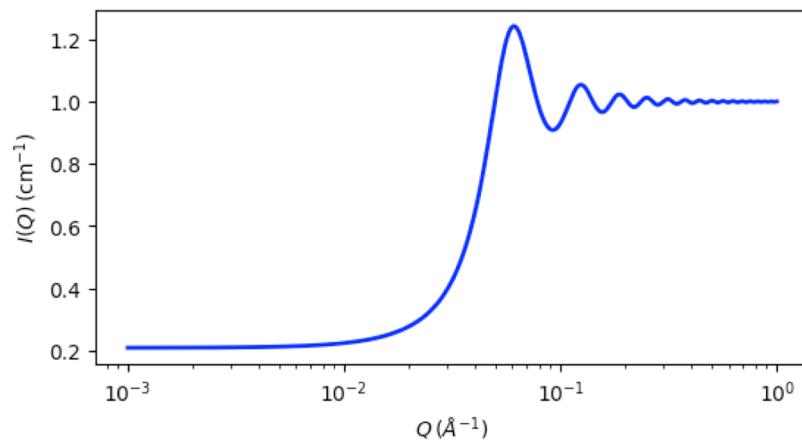
Spherical particles in solutions through hard-sphere
Interactions (excluded volume).



$$V(r) = \begin{cases} +\infty & r < \sigma \\ 0 & r > \sigma \end{cases}$$

Four different type of interaction models:

1. Hardsphere
2. Hayter_MSA
3. Squarewell
4. Stickyhardsphere



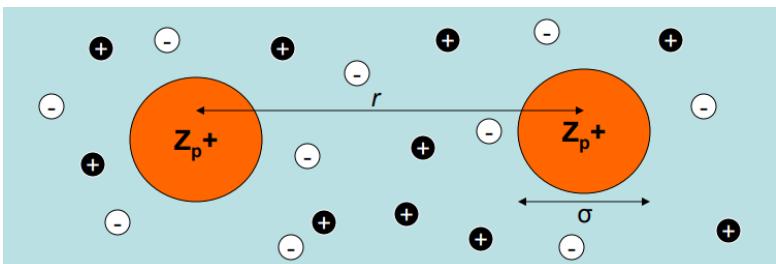
Most colloids are rigid objects: proteins, silicon nano-particle, ...

$S(Q)$: Hayter_MSA

$$I(q) = (\Delta\rho)^2 nM^2 P(q) S(q)$$

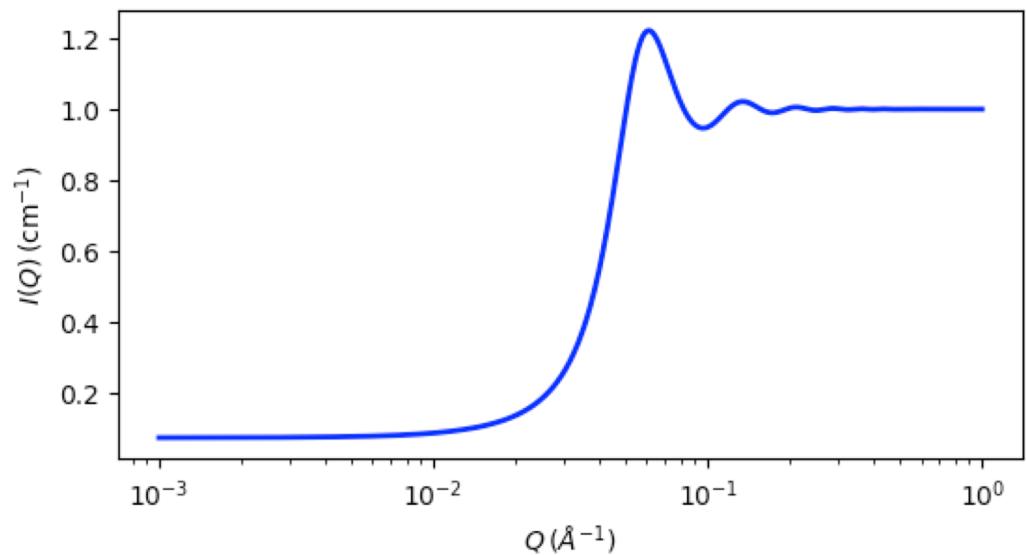
Colloidal particles with charge interactions.
(MSA closure)

Screened Coulombic repulsion between
particles



Four different type of interaction models:

1. Hardsphere
2. Hayter_MSA
3. Squarewell
4. Stickyhardsphere



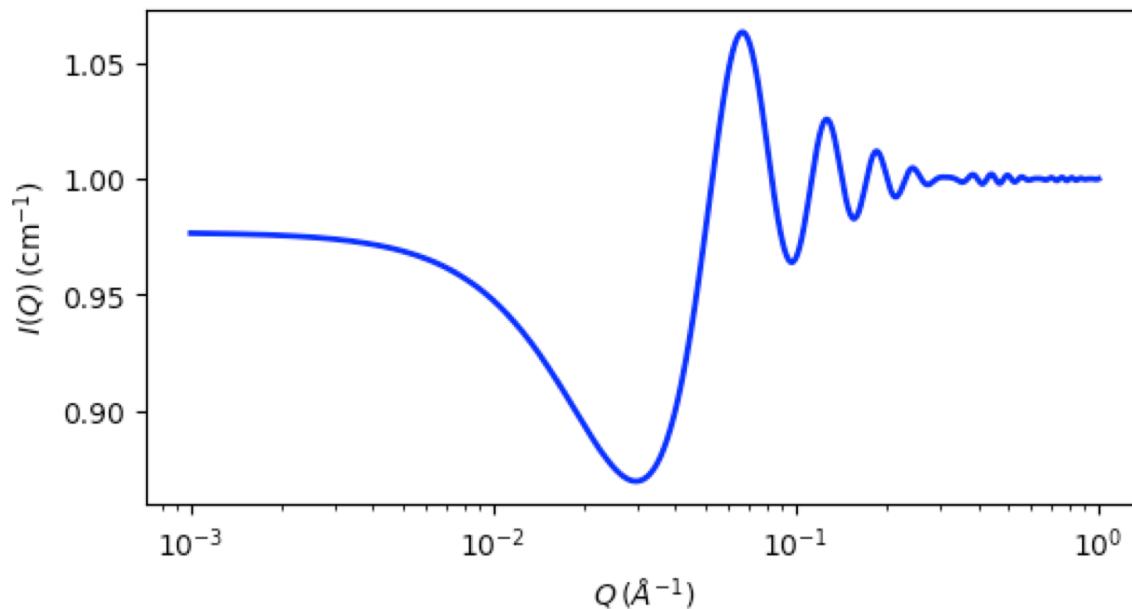
$S(Q)$: Squrewell

$$I(q) = (\Delta\rho)^2 nM^2 P(q) S(q)$$

Colloidal particles with narrow, attractive square well potential

Four different type of interaction models:

1. Hardsphere
2. Hayter_MSA
3. Squarewell
4. Stickyhardsphere



Methods to include structure factor

Monodisperse approximation (spherical symmetric interaction potential, independent of particle size)

$$\frac{d\sigma_i}{d\Omega}(Q) = \left[\int_0^\infty N_i(x; \mathbf{l}_i) F_i^2(Q; \mathbf{a}_i, x) dx \right] S_i(Q; \mathbf{s}_i)$$

Decoupling approximation (particles with small anisotropies and polydispersities, independent of particle size and orientation)

$$\begin{aligned} \frac{d\sigma_i}{d\Omega}(Q) = & \int_0^\infty N_i(x; \mathbf{l}_i) F_i^2(Q; \mathbf{a}_i, x) dx + \frac{1}{n_i} \left[\int_0^\infty N_i(x; \mathbf{l}_i) F_i(Q; \mathbf{a}_i, x) dx \right]^2 \\ & \times [S_i(Q; \mathbf{s}_i) - 1] \end{aligned}$$

with

$$n_i = \int_0^\infty N_i(x; \mathbf{l}_i) dx.$$

Local monodisperse approximation (particle of certain size is surrounded by the particles with the same size)

$$\frac{d\sigma_i}{d\Omega}(Q) = \int_0^\infty N_i(x; \mathbf{l}_i) F_i^2(Q; \mathbf{a}_i, x) S_i(Q; \mathbf{s}_i, R_i(\mathbf{a}_i, x)) dx \quad R_i(\mathbf{a}_i, x) = \sqrt[3]{\frac{3}{4\pi} V_i(\mathbf{a}_i, x)}.$$

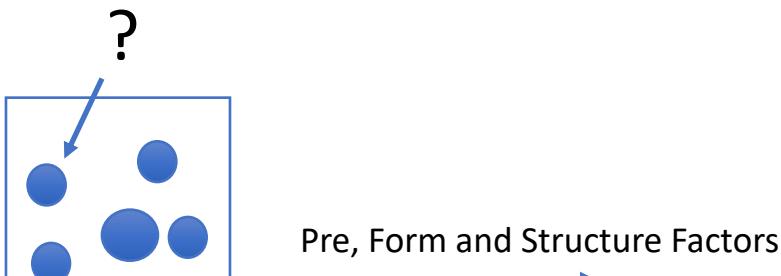
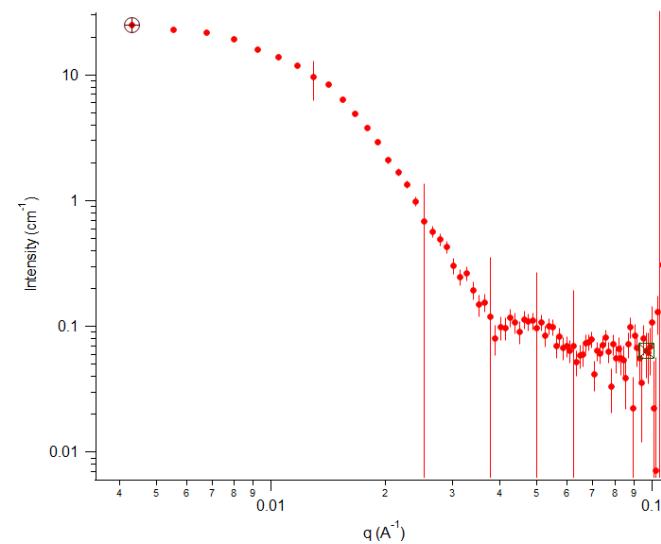
Polydispersity

Types of polydispersity:

- Size - all particles have similar shape but differ in size, e.g. nanoparticles colloids
- Shape – different shape and size (e.g. oligomeric mixtures)
- Conformational – particles of identical molecular mass, which adopt different conformations, e.g. disordered or flexible proteins

Question 4

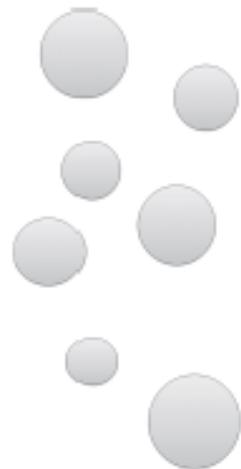
How to account for polydispersity?



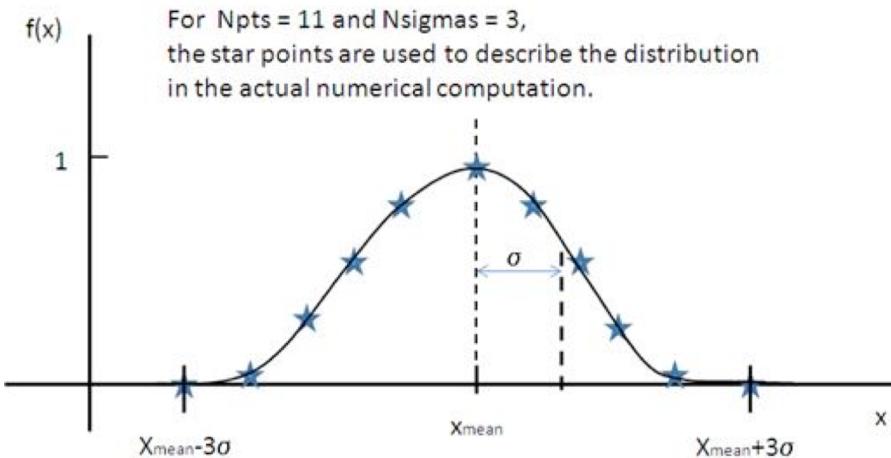
Size polydispersity

Average intensity for a population of particles that possess size distributions

The resultant intensity is then normalized by the average particle volume



$$P(q) = \frac{\text{scale}}{V} \int_{\mathbb{R}} f(x; \bar{x}, \sigma) F^2(q, x) dx + \text{background}$$



Shape polydispersity

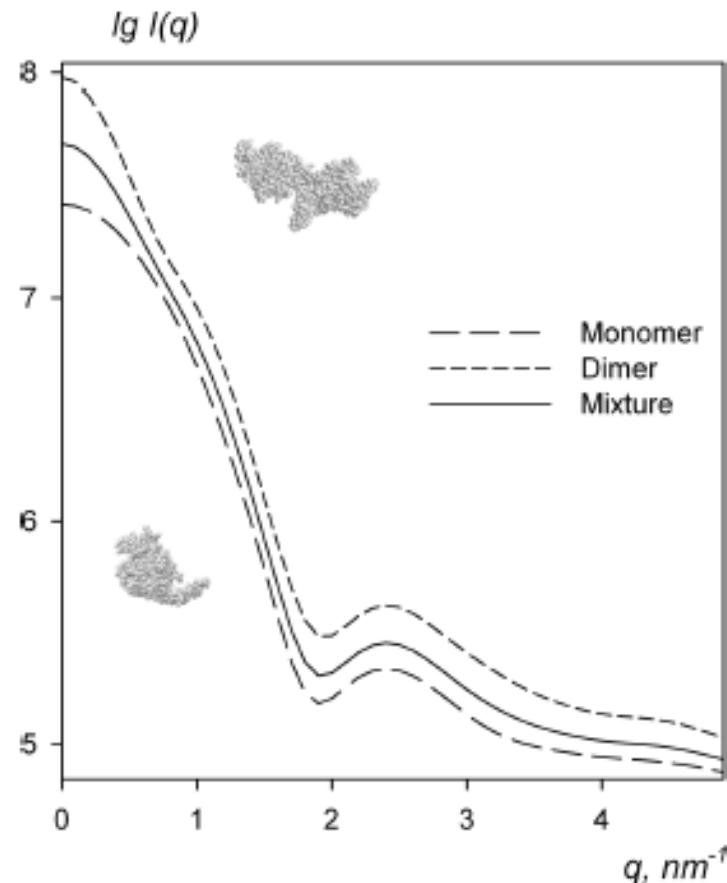
- Mixture of components gives combined scattering curve:

$$I(q_i) = \sum_{k=1}^K v_k i_k(q_i)$$

$v_k = n_k V_k$ volume fractions

$i_k(q) = I_k(q)/V_k$ normalized scattering intensities

- Combined curve can be fitted to experimental data $I_{exp}(q)$ to infer v_k



Conformational polydispersity

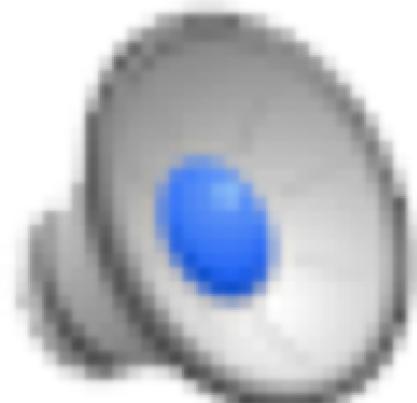
- Flexible and disordered proteins
- The same principle as for shape polydispersity:

$$I(q_i) = \sum_{k=1}^K v_k i_k(q_i)$$

$v_k = n_k V_k$ volume fractions

$i_k(q) = I_k(q)/V_k$ normalized scattering intensities

- Large number of parameters = high risk of overfitting



Summary

- Form factors represents the interference of neutrons scattered from different parts of the same object
- Structure factors represents interference between different objects.
- There are different ways to account for polydispersity

What hasn't been covered

- Rigorous derivations for form and structure factors (Orstein-Zernike equations)
- Backgrounds

$$I(q) = \frac{\text{scale}}{V} \cdot \left[3V(\Delta\rho) \cdot \frac{\sin(qr) - qr \cos(qr))}{(qr)^3} \right]^2 + \text{background}$$

- Resolution smearing
- Orientational and magnetic form factors
- And more...

Take home message

- We are working with low information content data
- Be careful when you add extra parameters
- Optimal experiment design is key to successful data analysis!

Questions?