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Not just pretty images...

... very pretty... but so what!
Challenge: to extract pertinent, quantified information to elucidate properties




A Lund university Infrastructure

TetraPak recart - chopped tomato carton
(x-ray tomography image)
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A word of warning...

"La Trahison des Images" ("The Treachery of Images") by René Magritte, 1928

...Images are just representations of reality...
...What you see depends on what you are using to “look at “ the object (i.e,
the physics of the interaction between the radiation and the material)




2D digital data
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2D digital data

4500 pixels




2D digital data

Voxels - 3D equivalent of a pixel

In x-ray tomography images, for example, the image “reconstruction” is
carried out at different heights, the thickness of which is defined by the
detector pixel size to produce a set of slices that can be assembled to give
a 3D image volume

thickness of the <& m"
dice ALLITTTITTTITTTT!

Schematic of a slice (composed of n x n voxels)




Data/Image resolution

The value of each sample/pixel/voxel will be the result of the
measurement of a given quantity, integrated over the sampling time /
sensor pixel area (or larger depending on the quality of the sensor)

eIn the case of tomographic reconstruction the voxel value is also dependent on the
blur/smoothing in the reconstruction

eImage format can effect the value - binary and tiff images should preserve pixel values,
but jpeg, for example, uses an image compression function involving mathematical
functions and thus the images are smoothed

The size of the pixel/voxel is the image “discretisation”...

... this is not the spatial resolution as is commonly said...

... spatial resolution will be a function of the detector quality and,
for tomography, the reconstruction algorithm, and the beam
divergence

... in reality the image is normally blurred between pixels/voxels
... and the pixel/voxel value is some mean value over a
neighbourhood of dimensions > pixel/voxel size




Grey-sca

le images - dynamic range and discretisation

Note that resolution will be also defined by the dynamic range of the
images

Grey-level

eRelates to the reduction of the continuous (analogue) spectrum to the discretised
(digital) sampling

eDetermines how far apart in the grey-scale features are and therefore how well
they can be separated

eShould be maximised during the image acquisition to capture all of the signal of
interest but also to avoid saturating detector pixels (can cause leakage to adjacent

ixel ,
pixels) Real object grey-level

Gradient dependent on object plus
contrast and brightness settings

High-end saturation

l;; - image pixel values

Low-end saturation

Analogue signal digitised such that I;; has integer values in range [O,N]:

8-bits: [0,255], 12-bits: [0,4095], 16-bits: [0,65535]



Not just pretty images...

- Quantification of structures and processes (mathematical image analyses)

- Input to numerical simulation

» advanced material development
» optimised materials processing
» enhanced numerical simulation

- And sometimes, not even pretty images
- Noise suppression
- Artifact suppression




Filtering - example (ultrasonic data acquired across a sample of clay)
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Filtering - example (ultrasonic data acquired across a sample of clay)
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Filtering

Most common filters
represent some windowing
in the frequency domain
l.e., selection of a specific
range of frequencies

e.g., to isolate a signal from
low or high frequency noise

Low pass

High Pass

Band Pass

Notch Pass

Amp

Amp

Amp

Amp

Frequency

Frequency

Frequency

AN

Frequency



Filtering - example (ultrasonic data acquired across a sample of clay)
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Filtering - example (Skatalites)
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Filtering - example (Skatalites)

Low pass filter
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Filtering - example (Skatalites)

High pass filter
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Filtering - example (Skatalites)

Band pass filter
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Brightness Image Fourier Transform Inverse Transformed

http://cns-alumni.bu.edu/~slehar/



Spatial domain operations




Spatial domain operations

Window operations

Differerent values/statistics can be determined over windows in the data

windows can be randomly positioned and of any size, but usually the
windows are placed on a regular grid and have a common (optimal)
geometry for the whole image

window analysis can be used for noise removal and smoothing as well
as for analysis, data enhancement, visualisation and quantification




e.g., hoise removal and smoothing

* Noise can be “salt and pepper’, Gaussian or structured

* The first two can be reduced by quite simple window operations
eClassic operators are despike, mean, median

abc

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 X 3averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente. Lixi. Inc.)

From Y. Wang - eeweb.poly.edu/~yao/EE3414/image_filtering.pdf

Equivalent to low-pass filtering - may blur edges

Also spatial domain operators also allow for more advanced methods
e.g., adaptive, edge preserving, anisotropic diffusion..




Example - enhancing contrast with standard deviation filter

X-ray tomography results:
*VE2 (50 MPa conf. pres.)

eHigh resolution scans ~30 um voxel size

i].

Localised deformation appears as higher density zones
(dark = higher density)

*Two bands meeting in middle of sample

E. Charalampidou, 2011, PhD Thesis, Heriot-Watt University and Université de Grenoble



Local standard deviation analysis:
*VE2 (50 MPa conf. pres.)

eHigh resolution scans ~30 um voxel size

Standard deviation
I

low high

Localised deformation appears as lower standard deviation

eMore homogeneous - reduced grain size?
E. Charalampidou, 2011, PhD Thesis, Heriot-Watt University and Université de Grenoble



X-ray tomography results:
*VEG6 (130 MPa conf. pres.)

eHigh resolution scans ~30 um voxel size

*No evidence (to the naked eye) of localised
deformation

E. Charalampidou, 2011, PhD Thesis, Heriot-Watt University and Université de Grenoble



Local standard deviation analysis:
*VEG6 (130 MPa conf. pres.)

eHigh resolution scans ~30 um voxel size

Standard deviation
S CEE
low high

*localised deformation revealed

E. Charalampidou, 2011, PhD Thesis, Heriot-Watt University and Université de Grenoble



Example: Local image gradient

Images from E. Ando



Example: Local image gradient = orientation

3D imaging of folded paper board

Quantification of fabrics

* Least variation of intensity along fibers

e Direction of smallest directional
derivative

 Perpendicular to the gradient in 2D

* (Can be found with the structure tensor

PhD project E. Borgqvist, Solid Mechanics, LTH or Hessian in 3D
In collaboration with TetraPak



Example: Local image gradient - orientation

3D imaging of folded paper board

Quantification of fabrics

PhD project E. Borggvist, Solid Mechanics, LTH
In collaboration with TetraPak due to deformation



Binarisation and thresholding

Many image processing operations are carried out on “binary” images

eBinary images are images where pixel values can take one of two values,
usually 0 and 1

eBinary images can be made from grey-scale ones by binarisation -
thresholding of grey-scale values such that all pixel values less than the
threshold are set to 0 and all greater than the threshold are setto 1

eThreshold can be set manually or by some automatic means, e.g., Otsu’ s
method

eCalibration might be possible, e.g., if the total volume of one/both phase is
known (e.g., by weighing the grains in a sand sample



Binarisation and thresholding

Binarised Image
Solid voxels in black

Greyscale Image
from Reconstruction

Inside of grains is selected, and some of the
darker partial-volume voxels are under the

threshold value

Histogram of 3D image
Void

[
-

count

Grain

Black White

, 16-bit Threshold Value
1. Compute histogram of entire 2. Threshold decreased from white 3. Threshold (red) applied
3D image (minus porous stones) until grain volume is obtained to image.

Figure 4.2: [Illustration of the application and calculation of a threshold value to a slice from test
HNEAO03. The voxels selected by the threshold (in red) show that the darker partial volume voxels on
the outsides of the grains lie below the threshold and are thus not selected.

Image from PhD E. Ando (Grenoble, 2013)

Can be extended to multiple phases, e.g., trinarisation of
grain, water and air in images of partially saturated sand



Porosity

Binarised Slice Binarised Slice Resulting Porosity Image
(pixels not visible at this scale: (with 10x10 nodes (+) for analysis) (pixels explicitly shown:
image 1000x1000 pixels) 10x10 nodes gives 10x10 pixels)

Volume of calculation of porosity

Each node’s porosity value gives
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Porosity

Binarised Slice Binarised Slice
(pixels not visible at this scale: (with 10x10 nodes (+) for analysis)
image 1000x1000 pixels)

Volume of calculation of porosity

++ 4+ Nt F A+ +++
+ + FAH e At + o+

Resulting Porosity Image
(pixels explicitly shown:
10x10 nodes gives 10x10 pixels)

Each node’s porosity value gives
one pixel in the porosity image

. Ando (Grenoble, 2013)

Tomo Porosity




Trinarisation: patchy water saturation in a granular material




Porosity - grey-scale

Not always possible to binarise images due to multiple phases or the
image resolution relative to the porosity present

For the second case, if there are just two phases we can make a “look-up
table” for porosity:grey-scale calibrated by “known” points

Tuffeau de Maastricht

Image from MSc A. Moldovan (Grenoble, 2010)



orosit
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Porosity - grey-scale

Tuffeau de Maastricht

Fig.4.19 Concept of porosity determination
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Image from MSc A. Moldovan (Grenoble, 2010)



Porosity - grey-scale

Tuffeau de Maastricht

Deviatoric stress versus axial strain for the triaxil test TX_05, made at a confining pressure
20000 of 4 MPa
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Image from MSc A. Moldovan (Grenoble, 2010)



Morphological operations

Mathematical morphology (MM) is a theory and
technique for the analysis and processing of
geometrical structures

Mathematical Morphology was born in 1964 from
the collaborative work of Georges Matheron and
Jean Serra, at the Ecole des Mines de Paris,
France...

...for the quantification of mineral characteristics
from thin sections

Includes operations such as dilation, erosion,
opening, closing, granulometry, skeletonization,
ultimate erosion, segmentation...

(after wikipedia)

A shape (in blue) and its
morphological dilation (in
green) and erosion (in
yellow) by a diamond-shape
structuring element.

http://en.wikipedia.org/wiki/Mathematical_morphology



Dilation and erosion

The dilation of the dark-blue square The erosion of the dark-blue square by

by a disk, resulting in the light-blue a disk, resulting in the light-blue square.
square with rounded corners.

\

http://en.wikipedia.org/wiki/Mathematical_morphology




Dilation and erosion - example of use

Calculation of sample volume from tomography image

@

Binary 1
e S 3D Dilate 8 times

~
' ; .---

2D Fill Holes

‘
3D Erode 8 times /

Grey — Original Binary Image
Grey + Black — “Sample Volume Image”

Note: Pores are all filled with black,
but the perimeter of the slice
continues to be defined by the grains
at the edges, as desired.

Image from PhD E. Ando (Grenoble, 2013)



Skeletonisation

In shape analysis, skeleton (or topological skeleton)
of a shape is a thin version of that shape that is
equidistant to its boundaries. The skeleton usually
emphasizes geometrical and topological properties
of the shape, such as its connectivity, topology,
length, direction, and width. Together with the
distance of its points to the shape boundary, the < : >
skeleton can also serve as a representation of the

shape (they contain all the information necessary to
reconstruct the shape).

(Wikipedia)

http://www.inf.u-szeged.hu/~palagyi/skel/skel.html

Lenthe & Mller, 2006, Bone



Structural imaging and characterisation:

Paperboard Segmented & Labelled fibres  Fibre central axes
(1.5 micron voxel size)




Structural imaging and characterisation: 3D image analysis, e.g.,

How do we see/identify and characterise microstructure?

LY

“Raw” image

Binarise
(grains and voids)




Watershed Segmentation - introduction of distance map




Watershed Segmentation - introduction of distance map




Watershed Segmentation - introduction of distance map

EDM
et P20 R A S P Markers Markers
Binary Image &r(})]lil:e?o’wg]ack 17 Local Maxima Merged to depth=2 Plotted on Binary Image

Image from PhD E. Ando (Grenoble, 2013)



Watershed Segmentation

Ml

=

Immersion Depth—0

Immersion Depth increased

6.

Image from PhD E. Ando (Grenoble, 2013)



Structural imaging and characterisation: 3D image analysis, e.g.,

How do we see/identify and characterise microstructure?

B AN A
.-‘\' ot \)Reg"‘. '
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L i LA B
=y

L

“Raw” image

Binarise
(grains and voids)

Watershed

Segmentation
(split grains apart)

Label Individual Grains




Structural imaging and characterisation: 3D image analysis, e.g.,

How do we see/identify and characterise microstructure?

“ID Card” of each object

s f“.,," 5

: 200N 00 o
Ottawa 50/70 : “-,_.'.‘ *eve
Grain ID = 46808 X
3D Surface Area = 1354.4 px?
3D Volume = 4066 vx
Centre of Mass = [ 448.3, 371.8, 685.8 ]
Orientation Vector 1 =[ 0.40, 0.92, 0.03]
Orientation Vector 2 = [ -0.07, -0.19, 0.98 ] P

]
a

“Raw” image N

REINE
(grains and voids)
Watershed

Segmentation
(split grains apart)

Label Individual Grains




X-rays and neutrons — complementary segmentation

From E. Lehmann



Dual modality registration and segmentation

Dual modality neutron and X-ray tomography for enhanced image
analysis of the bone-metal interface - Torngvist etal., 2021
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See Anders Kaestner’s lecture earlier in the week



Structural imaging and characterisation = models

- Avizo Fire

CAE Solvers, Abaqus,
Ansys, Comsol, Fluent,
OpenFOAM,
StarCCM+, etc.

Pore Network
Modeling

Lichau et al., 2011




Structural imaging and characterisation = models

(Images from 4D Imaging Lab)

Srinivasa, Kulachenko , Karlberg, 2017, Cellulose



4D imaging and in-situ experiments
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Grenoble, France




4D imaging and in-situ experiments

4D = 3 dimensions in space plus time

In-situ = performing an experiment within the measurement set-up, in
this case within an x-ray tomograph (lab or synchrotron)




Tudisco et al, 2017

4D neutron Imaging & Digital Volume Correlation (DVC)

0mm 1.6 mm Axial displacement

Rock sample deformed in-situ with neutron imaging

(Vertical slices through middle
of volume perpendicular to
main localisation)




Digital Volume Correlation (DVC)

] (See Hall (2005, Geophysics) and Hall et
e.g., " TomoWarp2"”: Tudisco et al., 2017

al., (2009, ComGeo), Tudisco et al., 2017)

X-ray tomography
image volume
before loading

; =
J_P(x,y,z) i (x,,2)

’ 4

X-ray tomography
image volume after |
loading

# Original volume ¥ Displaced volume

3D search 3D for transformation vector based on best image

correlation = displacements (+ rotation / distortion)

Full 3D strain tensor field

& &
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€
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v €y
Continuum Eax &y

_, >
hypothesis

Strain invariants
- volumetric and shear strains

E, = +E +8&




Tudisco et al, 2017

4D neutron Imaging & Digital Volume Correlation (DVC)

0 mm 1.6 mm 3.3 mm 4.9 mm Axial displacement

SERARED

Maximum shear strain field

Z .
(Vertical slices through middle derived from DVC

of volume perpendicular to
main localisation)




Final example - flow front tracking
Timelapse neutron radiography of “2D” specimens and two fluid phases

Oil

Dry

Difference with first image

Water



Quantification

e Automatically picked fluid fronts at time N

eTrack each point on the front at time N through each image for all
time steps

eChallenging due to concavities and convexities of front and need
to follow points on the front through time

eDeformable contour tracking and front propagation

eFlow fronts at each step

eFlow lines from start to finish

eFlow velocities from distances along flow lines and image times
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Hydromechanics of geomaterials: neutron imaging (fluid flow)

Imbibition monitoring in 3D (high-speed neutron tomography)

1 minute tomographies @ HZB

PhD project of Maddi Etxegarai
(collaboration with Univ. Grenoble)




Imbibition monitoring in 3D (high-speed neutron tomography) & DVC

neutron absorption
Neutron tomography Fluid Velocity Shear strain Volumetric strain

(DVC based on pre- and post-
Collab. E. Tudisco, (Lund University) & M. Etxegarai (Univ. Grenoble) deformation x-ray tomography




Pressure controlled H,O flow into D,0 saturated sample

WATER FRONT SPEED

mm/min 0.49

PhD project of Maddi Etxegarai (Univ. Grenoble)




Pressure controlled H,O flow into D,0 saturated sample

WATER FRONT SPEED

D AA
.
I .
0.01 0. : mm/min 0.49
Shear strain (from DVC of x-ray data)

PhD project of Maddi Etxegarai (Univ. Grenoble)




Dynamic imaging...?

Radiographies with evolution during rotation...

; : : WY S
20 40 60 80 100 120 60 80 100 120 20 40 60 80 100 120
r [pix] r [pix] r [pix]

(a) (b) (c)

Fig.4 Projection of the 3D column of fluid at the first a and last b angle. The difference between the first and
the (mirrored) last images in ¢ shows the fluid advance during the scan

Jailin et al., 2018




Dynamic imaging...?

Radiographies with evolution during rotation...

4 ] i : ; L N
20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120
r [pix] r [pix] r [pix]

(a) (b) (¢)

Fig.4 Projection of the 3D column of fluid at the first a and last b angle. The difference between the first and
the (mirrored) last images in ¢ shows the fluid advance during the scan

Jailin et al., 2018

Directly to dynamic quantification
(skipping reconstruction?)
Blurring the interface with modelling
model-based inversion
* Forward model projection data
based on a model of the sample
Update model and iterate to 20 40 €0 80 100 120 20 40 60 80 100 120

X [vox] X [vox]

convergence (@) (b)

Fig.9 Evolution of the front at different times of the scan acquisition, in voxels, reconstructed from the three
modes foras = 0 and b 60s




Dynamic imaging...?

Radiographies with evolution during rotation...

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120
r [pix] r [pix] r [pix]

(a) (b) (c)

Fig. 11 Projections of the sample during the pressure-driven flow test a step 7, 8 = 240°, b step 21, 8 = 0°
and c step 40, B = 292° Jailin et al.. 2018
*)

Directly to dynamic quantification Even possible with large jumps
(skipping reconstruction?) in position during rotation
Blurring the interface with modelling
model-based inversion
* Forward model projection data
based on a model of the sample
Update model and iterate to
convergence




Things don’t always go to plan.....




