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Recombinant protein production
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Recombinant protein production
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Components of a protein production experiment

» Gene sequence encoding the target protein (codon optimization;
purification/detection tags; signal sequence)

* Plasmid-based (episomal) or integrated (genomic) expression

* Promoter (inducible versus constitutive)

» Choice of host cell and specific strain (protease deficient; engineered
glycosylation pathway)

 Culture conditions (optimized to maximize functional yield)

Thanos Kesidis



The first recombinant mammalian membrane protein

structures used proteins produced in yeast

Rabbit Ca?*-ATPase, SERCAla Rat Kv1.2
(structure modelled on 1T5S) (2A79; 2005)

The high-resolution structure of a glycosylated Caenorhabditis elegans P-
glycoprotein synthesized in P. pastoris demonstrates that yeast glycosylation
does not necessarily hinder crystal formation (PDB code 4F4C; 2012)



An analysis of microbial expression systems
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Keywords: Despite many high-profile successes, recombinant membrane protein production remains a technical challenge;
Recombinant membrane proteins it is still the case that many fewer membrane protein structures have been published than those of soluble
Expression plasmid vector proteins. However, progress is being made because empirical methods have been developed (o produce the
Tag

or required gquantity and quality of these challenging targets. This review focuses on the microbial expression
omater

Detergent systems that are a key source of recombinant prokaryotic and eukaryotic membrane proteins for stroctural

studies. We provide an overview of the host strains, tags and promoters that, in our experience, are most likely to
yield protein suitable for structural and functional characterization. We also catalogue the detergents used for
solubilization and crystallization studies of these proteins. Here, we emphasize a combination of practical
methods, nol necessarily high-throughput, which can be implemented in any laboratory equipped for re-
combinant DNA technology and microbial cell culture.

Methods, 2018, 147: 3-39



Recombinant membrane proteins structures

» 31% of all membrane protein coordinate files deposited in the PDB were
derived from recombinant proteins (729)

» 71% of all unique structures were derived from microbial sources:
*  64% were produced in E. coli (468)
* 4% in P. pastoris (31)
« 3% in S. cerevisiae (22)

 Also used successfully in a minority of cases:
« Lactococcus lactis (see PDB entry 4US3)

* Pseudomonas fluorescens (5KUD)

« Schizosaccharomyces pombe (2PNO)

Methods, 2018, 147: 3-39



The target
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Tag position and length
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TEV protease is widely used to cleave tags (see 4C00, 3WVF, 4X5M and 4JA3) because it is still active
in the presence of the most commonly-used detergents

Thrombin protease is also widely used (see 2VQI, 2ABM and 3B5D for examples)
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E. coli promoters
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P. pastoris promoters

Yeast strain Promoter used in the expression plasmid
Inducible Constitutive Not stated Total
AOX1 PMA1

GS115 4

KM71 4

SMD1163 17 17

X33 4 4

Not stated 1 1 2

Total 30 1 31

Typically, integrative plasmids are used for expression in P. pastoris

P. pastoris can grow to >100 g/L dry cell weight; >500 ODg,, units/mL

Methods, 2018, 147: 3-39



S. cerevisiae promoters

Yeast strain Promoter used in the expression plasmid

Inducible Constitutive Not stated Total
GAL PMA1
BJ1991 1 1
BJ2168 3 1 4
BJ5457 1 1
BJ5460 1 1
Typically, episomal CACY1 1 1
plasmids are used
for expression in DSY-5 4 4
S. cerevisiae FGY217 2 2
INVScl 1 1
JTYO002 1
W303 pep44 1 2
WB12 1
Not stated 1 1
Total 15 1 6 22

Methods, 2018, 147: 3-39



Expression of human A,,R In S. cerevisiae

WT-A,,R WT-A,,R-tag
plasma membrane Vacuole

Spt3A-A, R-tag
plasma membrane Microb Cell Fact, 2017, 16:41
Methods, 2018, 147: 3-39




Expression of human A,,R In P. pastoris and extraction with

styrene maleic acid (SMA)

Human A,,R recombinantly produced with an N-terminal His,,-tag from the pPICZaA expression
plasmid in P. pastoris strain X33 (with a Asn154GIn mutation to preclude hyperglycosylation)

MW 60 mM 250 mM
(kDa) A :
_
175= ]T ’ i X y.in
e SMA 2000 co-polymer (2:1 Cray Valley)
58 =
46

Purification of SMALP-solubilized His-tagged A,,R from P. pastoris eluted from Ni2*-NTA linked
agarose as a single band in silver-stained fractions with 250 mM imidazole.
Western blot of the 250 mM imidazole fraction with an anti-polyhistidine antibody.

Biosci Rep, 2015 35: e00188



Expression of human A,,R in P. pastoris and SMA extraction
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Specific binding of [*H]ZM241385 (10 nM) to the adenosine A,, receptor, extracted either with DDM
or SMA in the absence or presence of CHS. Data are mean £ SEM, n=3

Methods, 2016, 95: 26-37



Expression of human AQP4 in P. pastoris and SMA extraction
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Lucas Unger

Cell, 2020, 181:784-799



Expression of human CD81 in P. pastoris and SMA extraction
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Tetraspanin, binds HCV E2 glycoprotein, ‘waffle cone’ structure solved, open questions around
oligomerization status and ‘open’/closed’ states

Expression in pPICZB encoding C-terminally Hisg-tagged human CD81 in P. pastoris strain X33

Luke Broadbent
BBA Biomembr, 2020, 1862: 183419



CD81 expressed in P. pastoris can be solubilised using

SMA polymers or conventional detergents
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Sometimes excess SMA masks signals in Western blots — look at the amount that remains
insoluble as a better measure for solubilisation efficiency BBA Biomembr, 2020, 1862: 183419



Solubilisation of CD81 by SMA2000 is slower than the

breakup of the total membrane
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« The rate of solubilisation is protein and expression system specific.
* You need to measure the protein specifically, simply monitoring OD is not sufficient.

BBA Biomembr, 2020, 1862: 183419



Purified SMALP-encapsulated CD81 is functionally folded
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Biophysical characterisation of purified CD81-SMALP
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Thermostability of purified CD81
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Size exclusion chromatography reveals two distinct protein

populations

1201 Peak 1

1.07

51001 =
< < 0.8-

E 8071 )
o % 0.61

c 609 ()

: 2
g 40" Peak 2 3 0.4

< o
< 20 2 0.21

J <
A 00_

|

Peak 2 fractions

Peak 1 fractions

Only the CD81 in Peak 2
binds to the HCV E2
glycoprotein

BBA Biomembr, 2020, 1862: 183419



Changing expression and purification conditions can
Increase the proportion of CD81 in peak 2
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Biophysical characterisation of the two SEC peaks
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Lipid analysis
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P. pastoris membranes:
dominated by PC

relatively long polyunsaturated
chains.

Several different PE species.

SMA-solubilised membranes:
No sphingomyelin or triacylglycerol.
Similar complex PC species.
Several different PE species.

SMA purified CD81.:

Almost complete loss of PE.

Pl and PA strong even in positive
mode.

BBA Biomembr, 2020, 1862: 183419



Conclusions

* Microbial hosts dominate in the production of recombinant membrane proteins
for structural studies

« Consider gene, sequence tags (and location), promoter, strain and culture
conditions

« CD81 expressed in Pichia pastoris can be solubilized and purified using SMA
polymer

* SMALP-encapsulated CD81 retains native folded structure

» Expression and buffer conditions can be optimized to improve protein quality

— Induce at low cell density
— Optimize buffer for SMA purification

» The lipid environment surrounding CD81 is enriched with negatively charged
lipids.
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